Industrial'T
Compact Control Builder AC 800M

Version 5.0

Application Programming
Introduction and Design

Industrial'T
Compact Control Builder AC 800M

Version 5.0

Application Programming
Introduction and Design

NOTICE

The information in this document is subject to change without notice and should not be
construed as a commitment by ABB. ABB assumes no responsibility for any errors that
may appear in this document.

In no event shall ABB be liable for direct, indirect, special, incidental or consequential
damages of any nature or kind arising from the use of this document, nor shall ABB be
liable for incidental or consequential damages arising from use of any software or hard-
ware described in this document.

This document and parts thereof must not be reproduced or copied without written per-
mission from ABB, and the contents thereof must not be imparted to a third party nor used
for any unauthorized purpose.

The software or hardware described in this document is furnished under a license and
may be used, copied, or disclosed only in accordance with the terms of such license.

This product meets the requirements specified in EMC Directive 89/336/EEC and in Low
Voltage Directive 72/23/EEC.

Copyright © 2003-2006 by ABB.
All rights reserved.

Release: June 2006
Document number: 3BSE044222R101

TRADEMARKS

All rights to copyrights and trademarks reside with their respective owners.

TABLE OF CONTENTS

About This Book

(€ 1S 1 1<) SR 9
DocUMENE CONVENTIONS ..eevvieiuiieiieriieeiiienireereesitesteesteesseesseesssesssessseessseesseesssesssesssessseens 10
Warning, Caution, Information, and Tip ICONS........cccceeriiriiiiiiiiiiiiiiceceeceee 10
TEIMINOLOZY ... vttt sttt et b et sb et sbee e ebte bt saeesbeennens 11

Section 1 - Design Issues

INEFOAUCHION ...ttt sttt s 13
ConCePUAl ISSUES ..ot s 14
Traditional or Object-Oriented Programming?cccceeevveeveneeneneniienenneenenns 14
List- or Data Flow-Driven EXecution?..........cccccoovieviiniinnienienieeiieneeeeeseee. 16
LIDIATIES .ottt sttt 18
Code OrganiZation.........cc.eeuieiieieriieieieeeee ettt et enesne e 19
Programming Languagescocceveriererieniinieiinieie ettt 29
Structured Data TYPEScocveriieiiiiiieiieiceee e e 30
Performance ISSUEScc.ccueiiiiiiiiiieicccecccet et 31
Memory CONSUMPLIONcocueririeriiriieieeeeteeieeie sttt eeesreesne s ene e enenneas 31
Calculations and Performance Data..........c.ccoccoevieviiiiiniinininincciceccceeee 32
Choosing Controller Hardwarecccceceviiiiinieiiinieniiieeeeeeeeeee e 33
Distribution on Applications and Controllerscoccevererierenrienenienieneeniene 34
LAMIEATIONIS 1.ttt ettt ettt ettt sttt s e et e sb e st e s bt e st e sab e e sabeeabeebeesabeeneean 38
OPC Server LIMItationsc..ccuevririniinenienieieietetetee ettt sne e 38
Application Size Limit.........ocooiiiiiiiniiiiiiiieeeeeee e 39
Maximum Number of Controllers, Applications, Programs and Tasks................ 39
Maximum Number of POUs and Variablesc...ccocerviiniinniinieniiiieenienieee 40
INSUM LIMItationscccecveeieieiriiiinienieieieieieeee et 42

3BSE044222R101 5

Section 2 - Programming Languages

GEINETAL ...ttt ettt et ettt b et et e st st e sbt e e enate s 43
SHUCTUTEA TEXE, ST .oeiiiiiiiiiii ittt ettt e e e ettt e e e e eeeeeeeeseeesessesesssaanes 45
Suitable for Complex Calculations and Loopingcccccceeevereecienieecieneeniennene. 45
High Threshold for Programmersccccceeeveririenennienenneneeieneeieseeeeniene 46
FUunctions i ST ..ottt 46
Function Block Diagram, FBD........cccccocciiiiiiiiiiiiiiiniicneeesteesteteseee et 47
Similar to Electrical DIiagrams...........cccoceoieriiieniiieiienieieneereeeeesee e 49
Boolean Functions and Feedback are Easy to Implementcc.ccocevereenenees 49
Not Suitable for Conditional Statements...........ccocueeveerierieenierrieeneenieenteeeeene 49
Functions in FBDc..ccooiiiiiiiiiiiiiciiccccce e 49
Standard Function B1ock TYPeScc.cecueriieiiininiiiiiiiencneeeeeceeeeeeee e 50
Ladder Diagram, LDcccceoiiiiiiiniiiiiiieicetenceeie ettt sttt 55
Easy to Understandcccooueecieiiiiieiiiiinicicccecre e 57
Weak SOftware StIUCTUIE........coviririiriiieicieietee et 58
Limited Support fOr SEqUENCEScccieieiiirieiiiieieeieeeeee e 59
Difficult to Reuse Code.........cccoiruiiiiiiiiiiiiiiicieseceee e 60
Functions in LDcoociiiiiiiiiiiiiceeee ettt 61
INSTIUCTION LLISE, T oiiiiieiiiieiiiieiiiieieeee et e e e e e e e e e et e e e e s e e aaaaaaesaeseeeeaeasaeas 62
Best System Performancec..coccooiiieiiiiiiiiniiiieecee e 62
Weak SOftware StIUCTUIE........coviririiriiiieieieietee ettt 63
Machine-dependent Behaviorccociviiiiiiiiiiiniinincececeeec e 63
Functions in T c..o.oeiiie e e 64
EXAMPIE oot sttt st 64
RESUIE REZISET ...ttt sttt s saea 65
Sequential Function Chart, SFCcccooiiiiiiiiiiii ettt 66
Powerful Tool for Design and StruCturingcocceceveerereeneneeneneeeseeiesieens 67
Other Programming Languages are Neededcccceviirrieenienieenienieenceneenne 68
Functions in SFC.......oo.oiiie ettt 68
Chart SIFUCLULEoviiiiiiiiii e 70
Steps and TIaNSILIONS.ceverueeeieiieiierieetieieee ettt sttt e e eae 71
ACION DESCTIPLIONS....cuvieiieriiieiieeiteeiteste ettt ettt sttt st et st e st e saseenbes 72

3BSE044222R101

Sequence Selection and Simultaneous SEqUENCEScoceereeerieerieereerieereennnenn 73
SUDSEQUENCES ...ttt ettt sttt st saeesbeesaee s 74

Advice on Good Programming Styleccceecieriirrieniiniieenie e 75

Section 3 - Programming in Practice

TNETOAUCTION ..ttt ettt sttt e e et e st st e sbt e e e e sbee s 77
OrganizZing COUEovueiiiiiiiiiiieiericetertee ettt ettt ettt st et be et sbeete e 77
Programming with Function BIOCKSc.ccocoviiiiiiiniiiiiccccce 78
Function BIOCk Calls......c..cooueriiiiiniiiiiniiiiiiiiteeeeneeteeteeeteeeee e 80
Function Block EXECULIONccocuiiiiiiiiiiiiiiiieetetceteteee e 81
Function Block Code SOTting..........cccueveevieneeniineinieneeieniietesieetenieeeeneeeieeneeenes 84
Control Modules in Function BIOCKScoceeriiiiiiiiiiiiniiniiieeeeeeciee 85
Continuous and Event-Driven Execution of Function Blocksc..ccccceceenenee. 88
Self-Defined TYPES....c.coouieriiriiieierieieeeettee ettt 93
Structured Data Type EXamplesccccooeeiirernieniniininienienieiceeieeeeeieeeee e 97
COAE SOTTINZ ...ttt st sttt e 102
COAE LLOOPS ettt ettt et sttt st 104
Variable STALEcocueiriiiiiiiieeieetee ettt bt 105
INOSOIT ALITDULE ...ttt ettt st e 106
Interpret and Correct Code Loop EIrorscccooveviiiiiniiiinincenicieeeeene 107
COde OPtIMIZATION. c...eveenierieeniertieienteetet ettt st ettt e bt eat et eate bt eaeenaesmeenbesaees 116
Basic Rules and Guidelines Regarding Tasks and Executionc.cccu....e. 116
Function Block, Operation, and Function Calls..........cccccocerveninieneniinenincnenns 117
Firmware Functions for Arrays and StrucCt..........ccceveervieeneenieniieeneenieeeeeenn 119
Excessive Conditional Statements.cccuerueeuierieeiereeienieeie e 120
16- or 32-Bit Data Variablescccceveevierirninirieneiieneeeeeeeceeeeee e e 121
Variables and Parametersccoceeoeruieienieienieiese e 121
Code Optimization EXampleccccoiieriiriiinieniieieenieeieeieesee et 122
TASK TUNINE «..veeeeie ettt ettt sttt b e ettt e b et e s bt e st e seeeneesaes 124

3BSE044222R101

Appendix A - IEC 61131-3 Standard

MaAIN ODJECTIVES ...ttt ettt 129
Benefits Offered by the Standard.............cccocoeviiriiiiiniiininieee e 130
Well-structured SOftWare..........cceoveeriiieiirieieieeeeee e 130
Five Languages for Different Needsccoceveririenieniienienneninieneneeieeeeiene 130
Software Exchange between Different Systemsccccoceeeiniiniiieninencnnn. 131

Appendix B - Naming Conventions and Tools

TRETOAUCLION ..ttt ettt et st et st e sbeesaae e e 133
NaMING CONVENTIONS ...uvevieniiriieieriteteniteteeiteieetteteeieestesteestesieestesbtesbesbeessesbeentesseensesuee 133
General GUIAEIINEScooieriiiiierieeeete ettt sttt 134
VariabIesc.ooiiiiiiiiiicic e s 138
Types and Parameters...........cooeovereeriiniiiienieieeeeeee e 138
Programsco.oooooiiiiiiiii et 141
TaSKS e ettt et et 141
LIDIATIES ettt 141
I/O NAMING. ...ttt et 142
COIIECE I/ et e 145
Parametersco.ceeveeeiieiieeee et e 145
DESCIIPLIONS. ...ttt ettt sttt 145
Suggested I/0 Signal EXtENSIONScc.coceevieiiieiiiriinieiiiceeiciee e 146
Name Handling.........cooeoieriiiiiiiniiiieete ettt s 150
Avoid Name Conflicts for Types—Type Qualification...........c.ccceceeeecrenieceennnnne. 150
INDEX

3BSE044222R101

General

About This Book

This manual provides some guidelines of what to consider when designing an
automation solution using Control Software for Compact Control Builder, such as
memory consumption, CPU load, and task execution. The manual also contains
some solid advice to programmers regarding optimization and how to create
effective code.

The libraries described in this manual conform to the IEC 61131-3 Programming
Languages standard, except for control modules, which are not supported by this
standard.

Section 1, Design Issues, helps you identify issues to consider when planning
your automation system. This section also gives you advice on how to design
your automation system.

Section 2, Programming Languages, helps you decide which programming
language to use. This section is a description of the supported programming
languages.

Section 3, Programming in Practice, gives you practical advice on
programming. It discusses a number of areas and gives you practical advice on
how to solve common problems.

In addition, the appendixes describe support information:

Appendix A, IEC 61131-3 Standard gives a short introduction to the standard.

You should also read Appendix B, Naming Conventions and Tools, before
starting to program your automation solution. This appendix contains rules and
recommendations for naming variables, parameters, types and instances
(objects).

3BSE044222R101

Document Conventions About This Book

Document Conventions

Microsoft Windows conventions are normally used for the standard presentation of
material when entering text, key sequences, prompts, messages, menu items, screen
elements, etc.

Warning, Caution, Information, and Tip Icons

This publication includes Warning, Caution, and Information where appropriate
to point out safety related or other important information. It also includes Tip to
point out useful hints to the reader. The corresponding symbols should be
interpreted as follows:

Electrical Warning icon indicates the presence of a hazard which could result in
electrical shock.

injury.

Caution icon indicates important information or warning related to the concept
discussed in the text. It might indicate the presence of a hazard which could
result in corruption of software or damage to equipment/property.

Information icon alerts the reader to pertinent facts and conditions.

Tip icon indicates advice on, for example, how to design your project or how to
use a certain function

f Warning icon indicates the presence of a hazard which could result in personal

Although Warning hazards are related to personal injury, and Caution hazards are
associated with equipment or property damage, it should be understood that
operation of damaged equipment could, under certain operational conditions, result
in degraded process performance leading to personal injury or death. Therefore,
fully comply with all Warning and Caution notices.

10 3BSE044222R101

About This Book

Terminology

Terminology

The following is a list of terms associated with Compact Control Builder. You
should be familiar with these terms before reading this manual. The list contains
terms and abbreviations that are unique to ABB or have a usage or definition that is
different from standard industry usage.

Term/Acronym

Description

Application

Applications contain program code to be compiled and
downloaded for execution in a controller.

Control Builder

A programming tool with a compiler for control software.
Control Builder is accessed through the Project Explorer
interface.

Control Module (Type)

A program unit that supports object-oriented data flow
programming. Control modules offer free-layout
graphical programming, code sorting and static
parameter connections. Control module instances are
created from control module types.

Firmware

The system software in the PLC.

Hardware Description

The tree structure in the Project Explorer, that defines
the hardware’s physical layout.

Industrial'T

ABB’s vision for enterprise automation.

Industrial'T 800xA
System

A computer system that implements the Industrial'™
vision.

Interaction Window

A graphical interface used by the programmer to interact
with an object. Available for many library types.

MMS

Manufacturing Message Specification, a standard for
messages used in industrial communication.

3BSE044222R101

11

Terminology

About This Book

Term/Acronym

Description

OPC/DA

An application programming interface defined by the
standardization group OPC Foundation. The standard
defines how to access large amounts of real-time data
between applications. The OPC standard interface is
used between automation/control applications, field
systems/devices and business/office application.

Process Object

A process concept/equipment such as valve, motor,
conveyor or tank.

Project Explorer

The Control Builder interface. Used to create, navigate
and configure libraries, applications and hardware.

Type

A type solution that is defined in a library or locally, in an
application. A type is used to create instances, which
inherit the properties of the type.

12

3BSE044222R101

Section 1 Design Issues

Introduction

When planning an automation solution, there are many things to consider:

* A number of conceptual choices have to be made, for example regarding which
programming strategy to use, see Conceptual Issues on page 14.

* The right hardware and network solutions have to be selected, so that
performance is satisfactory and there is sufficient margin for further
development later on. See Performance Issues on page 31.

* There are also certain limitations to the number of controllers, applications,
programs and tasks that can co-exist in a single controller. See Limitations on
page 38.

3BSE044222R101 13

Conceptual Issues Section 1 Design Issues

Conceptual Issues

Before starting to create your automation solution, it is necessary to consider a
number of strategical (conceptual) issues:

* Which programming strategy should I use? There is a choice between
traditional programming or object-oriented programming. See Traditional or
Object-Oriented Programming? on page 14.

* Which strategy should I use for the interaction between the different parts of
my automation solution? There is a choice between list-driven or data flow-
driven execution. See List- or Data Flow-Driven Execution? on page 16.

* Do I want to use libraries to create re-usable type solutions? Which parts of the
system are suitable for creating type solutions? See Libraries on page 18.

* How do I want to organize my code? There is a choice between using control
modules, programs or Function Designer. See Code Organization on page 19.

* Which programming language should I choose? See Programming Languages
on page 29.

* Which structured data types should I use? When should I use structured data
types? See Structured Data Types on page 30.

Traditional or Object-Oriented Programming?

This sub-section discusses traditional vs.object-oriented programming. We will
discuss the benefits of the object-based method as compared to the traditional
method and see how this, in connection with data-flow-driven execution, leads to
control modules — a very powerful programming concept.

Traditional Programming

Traditional programming has a straightforward structure, that is, the design (and
execution) during an execution cycle is determined by the sequential appearance —
you start at the top and work your way down. As the program design proceeds, in
traditional programming, one is often required to explicitly re-write the code if
major changes are to be made. Furthermore, you have to think carefully what is to
happen, and when it is to happen during an execution cycle. Needless to say, the

14

3BSE044222R101

Section 1 Design Issues Traditional or Object-Oriented Programming?

code design will be time-consuming, excessive and difficult to maintain and update,
as well as having a poor structural design.

Object-Oriented Programming

Object-oriented programming, on the other hand, is quite the opposite when it
comes to design and execution. While traditional programming focuses on the
overall task (for example “Manufacture cement”) the object-oriented way of solving
the same problem is to reduce a complex, or large, problem to isolated, self-
sustained procedures. Such procedures, given the “Manufacture cement” example,
could be “Regulate motor speed”, “Open valve for water”, etc. Each one of these
small items, or objects, is an isolated procedure.

For example, “Regulate motor” does not require any specific information about the
motor itself, and the same holds for the valve. Each object is independent, in the
sense that the object has an input (and an output) and between these, the object
analyses the situation and makes the appropriate decisions in its own encapsulated
world, resulting in an action, or output. While doing this analysis, the object does
not require any input from the outside world.

When using this method of program design, considerations, actions, etc., that are to
be taken by other objects must be placed outside the object in question. An example
is the command to start a motor; the “Regulator” object itself cannot decide this.
However, it can decide to stop the motor, if the speed becomes too high.

Note, however, that the normal stopping order for the motor is placed outside the
“Regulator” object, since this is normally not an issue for the “Regulator” object — it
is only concerned with one thing, regulating the motor speed and stopping the motor
in cases of faults or emergency. To conclude: normal behavior is placed outside
objects, while actions, such as security measures, are placed within the object.

Not only will code design be easy to survey, maintain, update, test, etc., using
object-oriented design, but you will also benefit from a simpler modelling
environment. Using object-oriented programming you will, after a period of object
development, be equipped with a number of reusable tools. When this toolbox is
complete, you will be able to create larger, more complex, projects more easily.
When the toolbox has reached the stage such that it becomes a de facto “standard”
in your daily project development routine, you can easily turn it into a library, for
even more simplified project development.

3BSE044222R101 15

List- or Data Flow-Driven Execution? Section 1 Design Issues

Although all this may seem like a pleasant way of working (and it is) you will be
faced with an initial heavy workload. You must analyze each object thoroughly and
design it to be an isolated, self-sustained, individual of re-usable nature. The
division is an especially difficult issue, which should be given careful consideration.
With an all too fine resolution, you will end up with an unmanageable set of objects,
while too crude a division will leave you with “giants”, that are difficult to re-use in
all the ways an object is meant to be re-used. The dividing line between these two
extremes is narrow. However, with time (and trial and error) you will become an
expert at this. Once you have your toolbox (or library), you will be able to test, re-
use, and develop large-scale projects with ease, and your initial “cost” (in effort and
time) will be more than compensated for.

What is said above regarding object-oriented design applies to both function blocks
and control modules. However, technical considerations may lead to one technique
being more suitable than another in some situations. One example is the passing of
parameters in deep structures, where control modules are to be preferred.

Summary

Object-oriented programming/design:

* simplifies your daily project development,

* provides you with a toolbox of reusable building blocks,

* makes it easier to design large, complex projects using the building blocks,

* makes it possible for you to create full-scale libraries that can be shared among
project participants

* makes it easier for you to survey, maintain, and update your code.

List- or Data Flow-Driven Execution?

Above, the benefits of object-based programming were discussed, with focus on
reusable “building blocks” that make it easy to create larger, more complex, re-
usable designs.

Naturally, this is an important aspect. Equally important, however, is the actual
control and interaction between these building blocks and, as above, there are two
philosophies which can be applied — list-driven or data-flow-driven execution.

16

3BSE044222R101

Section 1 Design Issues List- or Data Flow-Driven Execution?

List-Driven Execution

Basically, list-driven execution can be compared to traditional (straightforward)
programming — in other words, you have to think of everything yourself. You have
to bear in mind what a cycle is and what is supposed to happen (and what is not
supposed to happen) during the cycle. Consequently, you have to think cyclically
and design the code such that the cycle (and the enclosed actions) is maintained.
However, if you fail to do this the consequences are not very severe, you will only
be faced with time delays.

Data Flow-Driven Execution

Data flow-driven execution, on the other hand, makes your design much easier. In
this case, all the objects communicate with each other, and can determine when
individual objects can send and receive information.

Control Module 1 Control Module 2
P1
P1:=1; —> | |[VI:=3-P1;
*——9

Code_Block_11 Code_Block_21

Figure 1. The code block in control module 1 must be executed before the code block
in control module 2 — not the other way around.

In order to prevent mistakes when trying to figure out the execution order, a data
flow-driven design can be used. By doing so, you will benefit from the code being
rearranged (behind the scenes). This is called code sorting.

In some cases, however, Control Builder’s efforts to efficiently sort the code will fail
and result in code sorting loop errors. These may not always be as serious as they
sound. In some cases, the code design is correct, but Control Builder may not be
able to analyze the (thoroughly planned) code design, resulting in code sorting loop
errors. An example of this is that two (IF) - statements cannot possibly be executed
at the same time. While the code sorting routine believes it to be a loop, it is in fact
not. For such occurrences there is a nosort command that can be issued to suppress
such “errors”.

3BSE044222R101 17

Libraries Section 1 Design Issues
Summary
Data-flow-driven execution:
* eliminates “dangerous” situations caused by poor, unclear design,
e optimizes your code so that execution is carried out in the most efficient way,
» simplifies the code design in that you can concentrate on small parts rather than
the entire project, and
* maintains the execution cycle and the actions contained therein.
Libraries

If you want to be able to re-use function blocks, control modules, etc., you can save
them as types in the application. Then, you can easily re-use these types to quickly
build a larger, and more complex application.

The drawback of saving them locally in the application is that you cannot make use
of them outside the application. If you set up a new application within the project, or
start a new project, you will not be able to access these building blocks. To be able
to access them outside the application you must save them in a library.

There are two types of libraries, Standard and Self-Defined. The set of Standard
libraries is installed with the system and is always present. They may not all be
present in the current project, but will be loaded on demand (that is, if you connect
them to your library or application).

As mentioned above, you can save your building blocks in your own, self-defined
library. As is the case with any of the other libraries, this library will also be
available to other projects, and you can also share the library with other project
members.

The structure of a library does not need to be flat, you can connect other libraries
(Standard or Self-Defined) to a new library, and by doing so, you create a library
hierarchy. Assume you want to set up a project library called Cement Factory
Library, which connects to a large number of Standard and Self-Defined libraries
(perhaps in a deep hierarchical structure). By doing so, other participants do not
have to load all the libraries required, just the “Cement Factory Library” in order to
access all the necessary function blocks and control modules.

18

3BSE044222R101

Section 1 Design Issues Code Organization

Application 2

Application 1

suoneoiddy

saueaql|
10lqo
$S990.d

(AlarmEventLib)

G’rocessObjBasicLib

selielql| piepuels
1ap|ing |04ju0)

Figure 2. You can create (deep) hierarchical structures using both Standard and
Self-Defined libraries.

Code Organization
When organizing your code, there are two basic methods of doing this:

* Using control modules, see Using Control Modules on page 20.
* Using function blocks inside programs, see Using Programs on page 20.
It is also possible to mix control modules and function blocks inside each other, see

Mixing Control Modules and Function Blocks on page 24.
For more detailed information on control module and function block types and
@ objects, see the Basic Control Software manual.
This part of the manual will help you understand how function blocks and control
modules interact and important differences that might affect which programming
strategy you choose to use.

3BSE044222R101 19

Code Organization Section 1 Design Issues

Using Control Modules

You can organize your code using control modules only. The benefit is clear:
Control Builder will arrange (sort) the code! so that optimal data flow is achieved
during execution. Note that this sorting only can be carried out for control modules,
see List- or Data Flow-Driven Execution? on page 16 for more details.

=~ Libraries
EI Applications
E% Application_1 - {Controller _1.Mormal)
----- @ Data Types
48 Function Block Types
42 Control Module Types
I=E23 Control Modules
Eﬂ Millarinderl MyMotorLib:MillGrinder Type
AFE Transport {Single control module)
: JPE Heating (Single control module)
Eﬂ Crushing {Single control module)
5& Maokar_1 MyMaotarType
5& Motor_2 MyMokorType
-4FE Makor_3 MyMotorType
[-4EF Programs
- Controllers
&[] Contraller_1 {172.16.0,0)

Figure 3. Design using control modules only.

Figure 3 shows an example of extensive use of control modules. All code is sorted
for optimal data flow during execution.

Using Programs

As well as using control modules only, it is also possible to use function blocks only.
These are then placed in a program.

When organizing your code, you will sooner or later face the question of how many
programs, code blocks, function blocks, etc., are needed and how the code should be
distributed on these objects. The below list provides some recommendations and
hints regarding this.

1. Since only control modules are used, all code will be sorted.

20 3BSE044222R101

Section 1 Design Issues Code Organization

* A Few Large Programs or Several Smaller Programs?

The smallest unit that is compiled and downloaded to the controller is a
Program Organization Unit (POU). As discussed in other sections in this
manual, a program is also a POU. It is tempting to put all the code in one
program, but this is not recommended, since this will lead to all code being
compiled every time, and all code being downloaded, even if the changes made
are minimal. The results of such a design would be that downloading would
take a long time, and that much more memory would be allocated in the
controller during download. The latter would result in a dramatic reduction in
the possible size of an application.

An obvious solution to this problem is to divide the program into several
smaller ones, and then make use of the code block features within the programs
(or POUs). Although this may seem to be an ideal solution, there are a number
of drawbacks with this design, compared to fewer but larger, programs. Finding
the right balance can be difficult.

Note the following:

— To search for variables outside a POU, you must use the Search and
Navigation function. See the Basic Control Software manual.

— The FBD and LD languages supply automatic cross-references between
pages, the other languages do not.

Both these facts should be taken into consideration at the design stage, and
weighed against the prolonged download time and memory consumption
discussed above.

e Let Programs Reflect Reality on a Large Scale!

Programs should be organized according to functional areas, such as “Intake”,
“Production”, “Outlet”, etc. Putting the code for these three functional areas in
one program would be poor design. Furthermore, programs (and code) should
also be organized with regard to execution demands (interval time, priority,
etc.), that is, task properties.

3BSE044222R101 21

Code Organization Section 1 Design Issues

It is a common misapprehension that each program should have a unique task.

@ This is not the case. Several programs can share the same task, and they should if
the programs all have the same requirements regarding interval time, priority etc.
If you have two or more tasks with the same settings, you have a poor design.
There is seldom need for more than 3-5 tasks.

* Let Code Blocks Reflect Reality on a Small Scale!

Apart from dividing the code into several programs, you can also use several
code blocks within each program (or POU). It is then necessary to decide how
many code blocks to use, and how much code should be allowed in each code
block.

(Up to 100 code blocks can be used in a POU, but it is seldom appropriate to
have so many code blocks.)

As programs reflect the process on a large scale, code blocks can be used to
reflect the process on a smaller scale. For example, the control of a motor or
valve (within a functional area) can be put in a single code block with a suitable
name. It is also possible to define the execution order within a POU using code
blocks, since code blocks are executed from left to right.

Obtaining a good balance between the number of programs and the number of
code blocks within the programs may be difficult. The problem can be
illustrated as a two-dimensional chart.

Number of Programs

oA

Ce

Be

Number of Code blocks

Figure 4. Programs vs. Code blocks.

22 3BSE044222R101

Section 1 Design Issues Code Organization

Having several programs and few code blocks (A), or few programs and several
code blocks (B) is poor design. A compromise like (C) is the best solution. We
can also add a third dimension — function blocks that are declared in the
programs.

Number of Programs

Function blocks

Be

Number of Code blocks

Figure 5. Including function blocks adds a third dimension to the problem.

This third dimension is unlimited since you can have as many function blocks
as you like, and more function blocks, in each function block, etc. You can also
add control modules within a function block type, in order to use control
modules in a program. (This provides a way of using regulatory functions that
are only available as control modules, although you are using programs.)

It is important to note that the two-dimensional design (see Figure 4) is more
important than the three-dimensional design (see Figure 5), when it comes to
download time and memory consumption.

When using the programming languages FBD and LD it is easy to assume that
the pages in a code block correspond to the “function block axis” in Figure 5.
This is not the case. Code blocks in FBD and LD can contain many pages but
they still belong to the same code block in the POU.

Mixing Control Modules and Function Blocks

It is also possible to mix control modules and function blocks, that is, to place
function blocks inside control modules, and to place control modules inside
function blocks.

Using Function Blocks in Control Modules

It is not always possible (or suitable) to use control modules throughout the
design. Simple tasks are best implemented using function blocks. Control
modules should be used at higher levels of complexity.

3BSE044222R101

23

Code Organization Section 1 Design Issues

When you need to implement simple tasks, function blocks can be included in
a control module (or several control modules).

=~ Libraries
EI Applications
EI% SimpleLoop - {TankController, Mormall)
----- @ Data Types
-3 Function Block Types
-42F Control Module Types
=-4FF Control Modules
5& ProcModelForCMLoop Tanklib:CascadeTanks
Pk ProcModelForFBLoop TankLib:CascadsTanks
Pk ProchModelForCMInFELoop TankLib:CascadeTanks
=-4FE ProcModelForFERidLoop TankLib:CascadeTanks
5& UpperTank Tank
Eﬂ Inputvalve Valve
[FFE Info Infovalve
EEX0elayvaly ControlStandardlib:Delayalg
J& SampleTime SampleTime
-JFE UpperTankLevelld AnalogInlosim
5& InputvalvePositionIo AnalogOukIOSim
4P LowerTank Tank
5& LowerTankLevelld AnalogInIOSim
-4 CMLoop SimpleLoop
=-48F Programs
EI ControlLoops
= PidSimpleReal ControlSimpleLib:PidSimpleReal
P CMInFELoop SimpleLoopInFE
= Pk CMLoopInFE SimpleLoop
: Pk Processvalue ControlStandardlib: AnalogInco
Pk pidController ControlStandardLib:Pidco

----- FFE Controlleroutput ControlStandardLib: AnalogOubcc
----- 48} FEPidLoop ControlBasicLib:PidLoop

Programa

I:I--- Cascadeloop - {TankController . Normalz)

I:I--- FuzzyControlLoop - {TankController, Normal3)

- [Cantrollers

Figure 6. Function blocks can be used within control modules.

In the figure above a function block (DelayAlg) of type DelayAlg (taken from
the Control Standard Lib) has been included within the Input Valve control
modules (of Valve type).

ﬂ ‘When control modules contain function blocks, the code blocks inside the
function blocks are not sorted.

Control modules are only executed once per scan, whereas function blocks may
be executed several times per scan (or not at all).

e Using Control Modules in Function Blocks

As mentioned above, it is not always possible to use function blocks
throughout the entire design, but you can include control modules in a function
block (or several function blocks). A good reason to do this would be to include

24 3BSE044222R101

Section 1 Design Issues Code Organization

functions that are only available as control module types in your design, while
you continue working in the Function Block Diagram editor.

=~ Libraries

EI Applications

EI% SimpleLoop - {TankController, Mormall)

----- @ Data Types

-3 Function Block Types

-42F Control Module Types

=-4FF Control Modules

5& ProcModelForCMLoop Tanklib:CascadeTanks
-4FE ProcModelForFELoop Tanklib:CascadeTanks
-JFE ProcModelForCMInFELoop TankLib:CascadsTanks
=-4FE ProcModelForFERidLoop TankLib:CascadeTanks
5& UpperTank Tank

Eﬂ Inputvalve Valve

P FFE Info Infovalve

J= Delayalg ControlstandardLib:Delayalg
J& SampleTime SampleTime

FFE UpperTanklevello AnalogInIOSim

FFE InputtalvePositionIO AnalogOutIosim

Pk LowerTank Tank

-9FE LowerTankLevelld AnalogInIOSim

-9 CMLoop SimpleLoop

[EEE3rroarams
EI ControlLoops

48} PidsimpleReal CaontrolSimpleLib:PidSimpleReal

=48 CMInFBLoop SimpleLoopInFB

Eﬂ CMLoopInFE SimpleLoop

‘ 4P Processvalue ControlStandardLib: AnalogInCc
-4FE pidController ControlStandardlib:RidCc

----- FFE Controlleroutput ControlStandardLib: AnalogOubcc
----- 48} FEPidLoop ControlBasicLib:PidLoop

Programa

I:I--- Cascadeloop - {TankController . Normalz)

I:I--- FuzzyControlLoop - {TankController, Normal3)

- [Cantrollers

Figure 7. Control modules can be used within function blocks.

In Figure 7, several control modules (ProcessValue, PidController,
ControllerOutput) have been inserted into the function block CMInFBLoop. As
mentioned previously, the code for function blocks is not sorted for optimal
data flow during execution. However, the code for the control modules in the
function block is sorted (locally) according to data flow.

Let us assume that we have another function block in parallel with this one.
The control modules in that function block are also sorted locally. But, these
two isolated groups of control modules are not sorted relative to each other. If
there is an exchange of variables between these two control modules, there will
be time delays.

3BSE044222R101 25

Code Organization Section 1 Design Issues

In Figure 8 Control module 1 and 2 will be sorted together as will Control
module 3 and 4. However, these two individual groups (grouped by Function
Block 1 and 2) will not the sorted together.

Function Block 1

Control Module 1
Control Module 2|

Function Block 2

|Control Module 3|
Control Module 4|

Figure 8. The boundaries of the function blocks limit the sorting of control modules.

Control Modules vs. Function Blocks

Control module solutions may be more efficient than function block solutions,
particularly if complex applications with deep hierarchical structures are to be used.
This is in particularly true for parameters of structured type, which are distributed as
In and/or Out parameters. Function block parameters are copied at each call, while
control module parameters are set up once during compilation.

Suppose we have the same code in a function block and in a control module, and
that the blocks do not have any parameters. In this case, the function block will
execute faster than the control module, since control modules have an extra
overhead of 4-5 microseconds for each code block (in PM860), function blocks do
not have this overhead. The memory requirement will be the same for both.

Differences arise when adding parameters to the block. Each parameter in a function
block adds to memory requirements, but parameters in control modules do not.
Furthermore, connected parameters (In or Out) in function blocks are copied from
one variable to another in order to establish data consistency within the block.
Parameters in control modules, on the other hand, are simply references that are
resolved during compilation.

The difference in performance between function blocks and control modules is
caused by the number of parameters used. Connecting parameters in function blocks
and/or having parameters of structured type in function blocks will result in poorer

26

3BSE044222R101

Section 1 Design Issues Code Organization

performance for the function blocks. Neither of these affect control module
performance.

Function block parameters are copied at each call, which means that the CPU will
spend considerable time passing parameter values to and from function blocks, if
there are deep structures in the program. The parameter connections of a control
module, on the other hand, are defined prior to compilation. This gives superior
performance using control modules when parameters are transferred through deep

hierarchies.
Function block solution Control module solution
A..

LL‘ A. B ~ A |

Nan L A L
— . A - — -1 A" I
Parameters copied Connection performed once

each cycle during compilation

Figure 9. Parameter values passing through deep hierarchies.

In other words, you should consider using control modules for complex applications
with deep hierarchical structures, and in applications with many parameters. In such
cases, the use of control modules may decrease the risk of deterioration in
performance.

Summary

When choosing which way to organize your code, you have a number of choices to
make:

* If you prefer a task-oriented programming approach, you have to choose
between control modules or function blocks organized in programs (but in the
first case, function blocks can be used inside control modules, and in the latter
case, control modules can also be used in the program and inside function
blocks).

Which approach to choose depends on things such as how your organization collects
data and converts it to an automation solution, as well as on the development and
maintenance strategy chosen for the automation solution in question.

3BSE044222R101 27

Code Organization

Section 1 Design Issues

The most important differences between control modules and function blocks are
summarized in the table below.

Table 1. Function blocks vs. control modules.

Property

Control modules

Function Block

Execution order

Automatic; compiler-
determined via code
sorting/data flow optimization.

Manual; code statements,
based on program flow as
implemented by the
programmer.

Execution per scan

Code blocks are always
executed once per scan
according to data flow
analysis.

A function block can be called,
and executed, zero, one, or
several times per scan.

Static parameter connections

Yes. This is an important
feature. A static parameter
connection does not change
during execution; it can only
be changed via code changes
and recompilation. Static
connections are set at
compilation, yielding efficient
code generation, powerful
compiler-based program
analysis, and better
performance.

No. Parameters are copied
each time the function block is
executed according to the IEC
61131-3 standard. For deep
and complex hierarchies, the
parameter copying of function
blocks demands significant
CPU time.

Graphics

Yes, in three different ways:
free-layout programming,
supervision, and interaction.

Indirectly via inclusion of sub
control modules.

28

3BSE044222R101

Section 1 Design Issues Programming Languages

Table 1. Function blocks vs. control modules.

Property Control modules Function Block
Parameters Parameters of the type in_out |Parameters of the type in, out,
can be connected to graphics. |orin_out can be connected to
Connections cannot be sub control modules.
inverted. ("NOT current However, in_out parameters

parameter name" is invalid.) must be connected statically if
they are connected to a control
module parameter.

Task connections Can be connected freely to Cannot be connected to a task
any task. if it contains in_out parameters
(see further Task Connection
and Parameters of Type
in_out).

Programming Languages

When it comes to selecting which one of the available programming languages to
use, there is no clear rule. The languages available are Structured Text, Instruction
List, Function Block Diagram, and Ladder Diagram. These are all “basic”
programming languages and can be used in any code block. You can even use more
than one language in a single program, function block, or control module.

There is an additional “programming language”, Sequential Flow Chart (SFC). SFC
is not, in a sense, a “real” programming language, but rather a structural
programming tool. Using SFC, you can easily design more complex sequences than
would be possible (with the same effort) in any of the other languages. As the name
Sequential Flow Chart implies, you have to plan sequentially when using this
language.

For each step in the sequence you can connect three code blocks, one that executes
at the start of the step, one that executes during the step and one that executes at the
end of the step. Additionally, there is also a Boolean variable for each step that can
be used as an indicator in another code block in any of the four languages listed
above.

For a more complete overview of the available programming languages, see Section
2, Programming Languages.

3BSE044222R101 29

Structured Data Types Section 1 Design Issues

Structured Data Types

An important part of creating re-usable solutions is to use structured data types.
These serve as communicators (tunnels) through the application, and can in many
cases be used instead of writing code directly in function blocks and control
modules. If we implement object-specific code in every place, instead of using
variables of structured data types, we would soon narrow down the dynamics and
flexibility of the system.

Structured data types can be seen as a thick cable, with each component as a cord
inside the cable. The strength of structured data types shows when they are used in
connections between types. You can connect control module types (through several
layers), without declaring any variables on each module level. One component
inside a valve can be directly accessed from a parameter on the outside. If you, later
on, need a new component, it will pass through all control module types and control
modules with no additional interconnection.

Figure 10 illustrates the use of structured data types inside a ValveLib library, in
Project Explorer.

=[] Libraries MNarme Data Type Attributes Initial “alu |Description i‘
+-[] System 1 [activate Boallo retain Activate valve
+-[F] BasicLib 1.0/0 -
+- [Iconlib 1.0f0 2 Fe1 BoollD retain Feedback 1
3
A

=B walvelib 1.0/0 FB2 BoollO retain Feedhack 2
+-F] Connected Libraries JL‘
. © Data Types Y Components | 4 »
@ MyValveHSIType Row 1, Cal 1 UM

@ MyYalvelOType

@ MyYalveParType
@ MyYalveStatusType
@ MyYalveType

Figure 10. (Left) MyValvel OType created in ValveLib. (Right) MyValvelOType with
its components.

For examples of the use of structured data types for I/O communication, see
@ Structured Data Type Examples on page 97.

30 3BSE044222R101

Section 1 Design Issues Performance Issues

Performance Issues

Before deciding on which hardware and communication protocol(s) to use, it is
necessary to make a number of calculations and estimate a number of things. Once
you have an idea of what you need, you can go on to choose your hardware. In order
to help you prepare for this choice, this subsection has been split into the following
parts:

* Memory Consumption on page 31, discusses things related to memory
consumption that should be considered during the planning phase.

* Calculations and Performance Data on page 32, gives an overview of the
Compact Control Builder Product Guide, which is of great help when
discussing performance issues.

* Choosing Controller Hardware on page 33, lists a number of things that should
be considered when choosing controller hardware.

* Distribution on Applications and Controllers on page 34, discusses advantages
and disadvantages of splitting your code on several applications and/or
controllers.

When planning your control network communication, you should also read the
Communication manual. This manual gives a conceptual overview of all supported
protocols and contains useful performance data for a number of key protocols, such
as MMS.

Memory Consumption

Memory is reserved for each defined function block type and control module type.
When another function block or control module is created from a type, the amount
of memory reserved is very small, in relation to the memory reserved for the type.
You should therefore create many control modules and function blocks (from a few
types), instead of solving your control problem with many memory-consuming

types.

3BSE044222R101 31

Calculations and Performance Data Section 1 Design Issues

Calculations and Performance Data

Two very important concepts when discussing the performance of you automation
solutions is CPU load and memory consumption. In order for you to understand how
to calculate those in different situations, you should study the Compact Control
Builder Product Guide, which contains information on things such as:

How much memory is needed in a controller before downloading an
application? (Known as “available memory”.)

How much free memory is needed to update a running application?
How does performance differ between different AC800M processor units?

How does performance differ between redundant and single controller
configurations?

How does the execution interval affect CPU load?
How do I calculate the CPU load percentage?

How much memory does the first instance of a type consume and how much do
additional instances consume? Numbers are given for a number of common
library types.

What is the execution time for instances of a number of common library types?
How do I calculate the ModuleBus scan time?
What is the I/O response time for a number of common protocols?

What effects MMS communication speed?

Performance data for all supported protocols is also found in the Communication
manual.

What is the accuracy of the different types of clock synchronization?

In addition to the above manual, you should also study Section 3, Programming in
Practice.

32

3BSE044222R101

Section 1 Design Issues Choosing Controller Hardware

Choosing Controller Hardware

Another important consideration is the choice of controller hardware. At least two
very important issues should be considered when choosing controller hardware:

¢ CPU capacity, see below.
* CPU, priority, see below.

CPU Capacity

If your application puts high demands on the controller regarding application
execution or communication performance, the following points should be
considered.

* How many I/Os are to be connected? As the number of I/Os increases, so do
the requirements on the control system.

* Do you have I/Os that require short interval times? You might want to add
external PROFIFUS-DP cards that contain separate CPUs for I/O processing.

. Which protocol should be used, and hence, which control hardware?

CPU Priority
1. AC 800M controller:

In AC 800M, servicing the S800 I/O via ModuleBus has the highest priority
(interrupt), and may cause a significant load on the CPU. Note that this
interrupt load is not accounted for separately, it will be evenly distributed over
other tasks. This means that the cyclic load presented for IEC 61131-3 task
execution includes the extra load caused by ModuleBus interrupts during task
execution.

The default setting for the ModuleBus scan cycle time is 0, which gives the
shortest possible scan. This may demand an unnecessarily large share of the
CPUs capacity. Setting the ModuleBus scan cycle time to TWICE as fast as the
"fastest" IEC 61131-3 task will decrease CPU load, in favor of user
application(s), and communication handling. This is needed in order to avoid
sampling problems due to the fact that the I/O systems and the IEC 61131-3
tasks execute asynchronously.

3BSE044222R101 33

Distribution on Applications and Controllers Section 1 Design Issues

The ModuleBus scan cycle time should be defined at an early stage of the
project, since many other parameters depend on it.

Apply caution if it proves necessary to decrease the ModuleBus scan cycle time
@ in a running plant, since this will reduce the CPU capacity available to the
application(s) and communication handling.

2. IEC61131-3 Code:

Execution of IEC 61131-3 applications has the second highest priority.
Depending on the amount of code and requested task interval times,
applications may demand up to 70% of CPU capacity (never more)'; the
execution of IEC 61131-3 code is called cyclic load. Should an application
require more than 70% of CPU capacity, the task scheduler automatically
increases the task interval times to re-establish a 70% load. This tuning is
performed at 10-second intervals. You can read more about task handling in the
Basic Control Software manual.

3. Communication Handling (lowest priority):

It is important to consider CPU load if communication handling is vital to the
application. Running at the maximum cyclic load will result in poor capacity
and response times for peer-to-peer and OPC Server communication.

Communication handling has the lowest priority in a controller. It is therefore
important to consider controller CPU load if the communication handling is
vital to the application. Running close to 100% total load will result in poor
capacity and response times for peer-to-peer and (OPC Server for AC 800M)
communication. It is recommended that peak total load will be kept below
100%.

Distribution on Applications and Controllers

The following sub-section discusses the pros and cons of dividing a project into
applications for one or several controllers.

ﬂ Communication between applications in controllers takes place using access
variables, independent of where the applications are located, see the Basic
Control Software manual.

1. This is not true if load balancing is set to false. The controller will run until it is forced to stop.

34 3BSE044222R101

Section 1 Design Issues Distribution on Applications and Controllers

One Application to One Controller

In general, it is recommended to assign one application to one controller.

Controller 1 Controller 2

Application 1 Application 2

Figure 11. One application to one controller.

There are some advantages to doing this, such as:
» there is only one application to keep track of,
* the application and the controller can be given the same names,

* /O variables can be freely connected (if several applications are connected to
the same controller, then variables must be sent between the applications via
communication), and it will be easy to search amongst them. You will not have
to transfer I/O values between applications.

= Applications
+ Application_1 - {Contraller_1.Mormal)
+ Application_2 - {Contraller_2.Mormal)
=1~ Cortrollers
=1~ Contraller_1 {172.16.0.0)
= Connected Applications
Application_1
+ Connected Libraries
+-[] Hardware AC 500M
+ % Tasks
S5 Access Yariables
=1~ Contraller_z {172.16.1.0)
= Connected Applications
Application_z
+ Connected Libraries
+-[] Hardware AC 500M

+ % Tasks

S5 Access Yariables

Figure 12. Project Explorer configuration with two controllers, each with one
application.

However, there are disadvantages. An application requires twice the memory size in
the controller when downloading changes, which means that more memory must be
allocated in the controller (to be able to handle future modifications).

3BSE044222R101 35

Distribution on Applications and Controllers Section 1 Design Issues

Dividing one Application on Several Controllers

If you must divide one application on several controllers, you have to consider this
when you plan your project. Although automatically generated variables handle
communication between the various parts of the application, unacceptable delays in
the variable communication may occur, leading to problems.

Controller 1 Controller 2

Applicgtion

Figure 13. One application, divided on several controllers. There is automatic
Application Internal Communication between the controllers.

The automatic communication that results from distributing an application between
several controllers is called Application Internal Communication. The transfer of
exported variables takes place at a lower priority than the execution of tasks. The
controller (Client) reading a certain set of variables asks the owner (Server) for the
exported variables cyclically. There is no synchronization between communication
and execution.

Note that the communication load resulting from Application Internal
Communication can be high, if the structure of the application is such that a large
amount of data needs to be transferred. Communication is divided into telegrams
that can contain 1 kB. All telegrams required are fetched within a certain interval,
but spread over that interval to increase throughput. Setting a low interval time can
cause deterioration in communication performance. Task execution is, however,
unaffected.

When distributing an application on several controllers you must consider the
following.

* Tasks in different controllers execute asynchronously.

* Automatic cyclic transfer of values between the controller (Application
Internal Communication), is asynchronous and the shortest possible interval
time depends on the controller and the network load. Recommended minimum
interval is 500 ms.

36

3BSE044222R101

Section 1 Design Issues Distribution on Applications and Controllers

The function WriteVar can be used to obtain non-cyclic Application Internal
Communication.

The values of strings are normally not transferred (default setting) as this
lowers communication performance. If you want string values to be
transferred, set the system variable EnableStringTransfer to True.

Data consistency is not guaranteed with Application Internal Communication.
Task execution can interrupt this communication service so it can not be
guaranteed that all exported variables are sampled from the same execution, or
incorporated into the client at the same time.

There is more information in the Control Builder online help. Search for
“Distributed Execution”.

There is no automatic supervision of communication. This must be performed
manually, by using appropriate function blocks.

1/0 signals must be read/written by a task residing in the controller to which the
I/0 signal is physically connected.

You cannot run Compact Flash with distributed applications.

Several Applications in One Controller

Loading a controller with several applications can provide an excellent way of
reducing controller stop time during a program change, and of gaining more space
for code in the same controller.

Controller 1

Application 1

Application 2

Figure 14. Several applications in one controller.

A small application in a controller has the following advantages.

The stop time during program modification will be reduced.

The application will be easier to survey.

3BSE044222R101

37

Limitations

Section 1 Design Issues

Limitations

There will be more memory available for future modifications.

However, there are a few disadvantages:

It will be more complicated to exchange data between applications, for
example, if several applications must read from the same analog input.

The number of tasks increases, which means that the overhead (the controller
load) will increase. A task can only execute code from one application, which
makes it difficult to specify the order of programs in different applications.

When designing an automation solution, there are certain limitations to the system
and to hardware that must be considered. Limitations can be found within the
following fields:

OPC server limitations, see OPC Server Limitations on page 38.
The size of applications, see Application Size Limit on page 39.

Number of controllers, applications, programs and tasks, see Maximum
Number of Controllers, Applications, Programs and Tasks on page 39.

Number of Program Organization Units (POUs) and variables, see Maximum
Number of POUs and Variables on page 40.

INSUM communication and number of MCUs, see INSUM Limitations on
page 42.

OPC Server Limitations

There are a number of limitations to OPC Server for AC 800M setup and
configuration, of which the most important are:

A single OPC Server for AC 800M may subscribe to data from a maximum of
24 PM861 controllers, or the equivalent number of variables from any other
controller.

A maximum of three OPC servers may subscribe to Data Access and/or Alarm
and Event messages from one controller.

38

3BSE044222R101

Section 1 Design Issues Application Size Limit

For a complete list of basic rules and limitations when configuring OPC Server for
AC800M, see the OPC Server for AC 800M manual.

Application Size Limit

The total amount of memory allocated for a complete application in the controller is
a critical factor. This section provides general guidance regarding the size of an
application.

Using simple calculations of the amount of memory allocated for a function block
or control module, it is possible to obtain a fairly good estimate of the actual size of
an application.

ﬂ This raises the important question: How large an application can I download and
still maintain safe operation? A rule of thumb is: never download an application,
so large that it cannot be downloaded to the controller twice.

When the template and added hardware have been downloaded, available memory
in the controller should be at least twice the application size. The reason for this is
that when changes are downloaded, the application running in the controller will be
duplicated, along with the new downloaded changes. Hence, at a certain point there
will be 'two' applications, plus the new changes, in controller memory at the same
time, thus the need for at least twice the memory size. When the new application has
been fully built, the old application will be removed from memory.

For a further discussion of application size and memory consumption, see
Calculations and Performance Data on page 32.

Maximum Number of Controllers, Applications, Programs and Tasks

The following limitations apply to the number of controllers and applications that
can be handled by Compact Control Builder, and to the number of applications,
programs, and tasks that can be handled by each controller.

Table 2. Maximum number of controllers, applications, programs, and tasks.

ltem Maximum Number
AC800M controllers 32 per control project
Applications 256 per control project

3BSE044222R101 39

Maximum Number of POUs and Variables Section 1 Design Issues

Table 2. Maximum number of controllers, applications, programs, and tasks.

Item Maximum Number
Applications 8 per controller
Programs 64 per application
Tasks 32 per controller

Maximum Number of POUs and Variables

The number of variables, function blocks, and control modules which can be used in
an application, a program, a control module, or a function block, may be very high,
but it is not unlimited.

The total sum of Programs, Control Modules and Function Blocks in an Application
is 65535. The maximum number of variables in an Application, or a Control
Module Type, or a Program, or a Function Block Type is 65535.

If you reach this limit, you should split your application (or type) into several. If
you run into serious problems, you will also find troubleshooting advice on how
to solve this kind of problem in the Basic Control Software manual.

Applications

The maximum number of variables in one application is comprised of:
* Global variables with their total number of components,

* Local variables with their total number of components,

* Each program corresponds to one variable.

Control Module Type

The maximum number of variables in one control module type is made up from:
e Parameters (two variables per parameter),

* Local variables with their total number of components,

* Variables representing each graphical connection in FBD between sub-function
blocks, with their total number of components,

40

3BSE044222R101

Section 1 Design Issues Maximum Number of POUs and Variables

Variables representing each graphical connection in CMD between sub-control
modules, with their total number of components,

Variables representing each unconnected parameter on sub-control modules,
with their total number of components,

Variables representing each unique literal used in connections to sub-control
modules (one per literal),

Variables representing each SFC code block (two per code block),
Variables representing each SFC state (three or four per SFC state),
Project constants used in the control module type,

Each function block corresponds to one variable.

Program

The maximum number of variables in one program is made up from:

Local variables (total number of all components),

Variables representing each graphical connection in FBD between sub-function
blocks (total number of all components),

Variables representing each SFC code block (two per code block),
Variables representing each SFC state (three or four per SFC state),
Project constants used in the program,

Each function block corresponds to one variable.

Function Block Type

The maximum number of variables in one function block type is made up from:

External variables (one per external),

IN_OUT parameters (one per parameter),

IN parameters with their total number of components,
OUT parameters with their total number of components,

Local function block variables with their total number of components,

3BSE044222R101

41

INSUM Limitations Section 1 Design Issues

* Variables representing each graphical connection in FBD between sub-function
blocks with their total number of components,

e Variables representing each unconnected parameter on sub-control modules
with their total number of components,

* Variables representing each unique literal used in connections to sub-control
modules (one per literal),

* Variables representing each SFC code block (two per code block),
e Variables representing each SFC state (three or four per SFC state),
* Project constants used in the function block type,

e Each function block corresponds to one variable.

Structured Variable and Project Constants

* The length of the name of each component in a structured variable or project
constant is limited to 32 characters,

* The total length of the name of a project constant (that is, the sum of the
number of characters in each component name) is limited to 140 characters.

INSUM Limitations

For information on INSUM-specific limitations, see INSUM performance data in
the Compact Control Builder Product Guide.

42

3BSE044222R101

Section 2 Programming Languages

This section gives an overview of the five programming languages in Control
Builder, and gives some advice about how to select the language that suits your
application best.

ﬂ The five languages are defined in the IEC 61131-3 standard, see also Appendix
A, IEC 61131-3 Standard. However, there are some differences compared to the
implementation in Control Builder.

Control Builder online help provides detailed information on the use of
instructions, functions, expressions, and so on, in the different languages.

General

Depending on previous experience, programmers often have their own personal
preference for a certain language. All the languages have advantages and
disadvantages, and no single one of them is suitable for all control tasks. We start
with three basic statements and then proceed to some important characteristics of
each language.

* In small applications with relatively few logical conditions, the demand for
good structure and re-use of code is not as great as in larger systems.

. ST and IL are textual languages, while FBD, LD, and SFC are based on
graphical metaphors.

* LD and IL are not as powerful as ST or FBD.

ﬂ Note that the definition of function block is allowed in all five languages, not
only in FBD. A function block is a method of encapsulating the code in a “black
box” with inputs and outputs.

3BSE044222R101 43

General

Section 2 Programming Languages

Al A3 M1 LDN A3
O Y ~ AND(A1
11 11 N\ OR A2
)
fe ST M1
11
LD IL
A1 —] S
1
M1 := (A1 OR A2) AND NOT A3; AR— 7 & — Mt
AB———— 9

ST

FBD

Figure 15. A Boolean condition programmed with four of the five IEC 61131-3
programming languages. SFC is normally only used for sequences.

Some important characteristics of the languages are listed in the table below.

Table 3. Control Builder M programming languages.

Language

Function

Function Block Diagram,
FBD on page 47

A graphical language for depicting signal and data
flows through function blocks and re-usable
software elements. Function blocks and variables
are interconnected graphically, which makes the
resulting control diagrams easy to read.

Structured Text, ST on page
45

A high-level programming language. ST is highly
structured and has a comprehensive range of
constructs for assignments, function/function block
calls, expressions, conditional statements,
iterations, etc.

It is easy to write advanced, compact, but clear ST
code, due to its logical and structured layout.

Instruction List, IL on page 62

A traditional PLC language. It has a structure
similar to simple machine assembler code.

44

3BSE044222R101

Section 2 Programming Languages Structured Text, ST

Table 3. Control Builder M programming languages. (Continued)

Language Function

Ladder Diagram, LD on page |Ladder diagram (LD) is a graphical language based
55 on relay ladder logic.

Sequential Function Chart, |Sequential function chart (SFC) is a graphical
SFC on page 66 language for depicting the sequential behavior of a
control program.

Structured Text, ST

Structured Text (ST) is a high-level programming language, similar to Pascal and
C, that has been specifically designed for use in programmable controllers. It is
compact, highly structured and contains a comprehensive range of constructs for
assignments, function/function block calls, expressions, conditional statements,
iterations and more. The code is simple to write and easy to read, because of its
logical and structured layout. The compactness of the language allows a clear
overview of the code and less scrolling in the editor. Tabs and spaces are used to
structure the code for easy reading.

ST code can be written using any text editor, for example Microsoft Word, and then
copied and pasted into the Structured Text editor code pane in Control Builder. Note
however, that you only have access to online help (use the F1 key) in the editor of
Control Builder.

Suitable for Complex Calculations and Looping

The ST language has an extensive range of constructs for assigning values to
variables, calling function blocks and creating conditional expressions. This is very
useful for evaluating complex mathematical algorithms, commonly used in analog
control applications.

No other IEC language can match the power of ST when iterations are needed, that
is, when certain parts of the program code are to be repeated a fixed or a conditional
number of times.

3BSE044222R101 45

High Threshold for Programmers Section 2 Programming Languages

High Threshold for Programmers

Of the five IEC languages, Structured Text is often the natural choice for people
with former experience in computer programming. Control engineers without
computer knowledge sometimes consider ST to be more complex with a higher
learning threshold than the LD or IL languages.

On the whole, ST is fairly easy to learn and a very effective tool for developing
control applications. The language is a good general purpose tool for expressing
different types of behavior with all kind of structured variables.

Most programmable controllers supporting the SFC language use ST as the default
programming language to describe the step actions in sequences.

Functions in ST

Statements

The ST language contains a list of statements, such as assignment statements
(variable:= expression), conditional statements (if, then, else, case), iteration
statements (for, while, repeat) and control statements (exit, return). Statements
contain expressions which, when evaluated, result in a value of a variable having
any kind of data type.

Statements should be written in a structured way, similarly to when programming in
Pascal or C.

(# Filling Tank 21 =*)

Valve?l Open := (Tank2l_LL OR Valwe2l Open) AND HOT Tank2l_ HL:
(* Indication Tank 21 =)

Panel?l HHL := Tank2l HHL:

Panel?l LLL := Tankzl ILLL:

Panel?l HHT := TankiZl Temp > Tank2l_Lim_ HT:

Panel?l ILT := Tankill Temp < Tank2l_Lim_ LT:

|»

[<]*]\ST_Code 4_IC_Code j FBD_Code # LD_Code N« | '
(==

Fiow 1, Col 3 [|NUM 7

Figure 16. Example of ST code.

46

3BSE044222R101

Section 2 Programming Languages Function Block Diagram, FBD

Expressions

ST uses Boolean expressions (and, or, not, xor), arithmetic expressions (+, -, * *%
mod), and relational expressions (=, >=, >, <=, <, <>). An expression using these
operators always results in a single value. An expression contains operators,
functions and operands. Operators may be +, -, /. Functions may be, for example,
sin(x) or cos(x). The operand can be a value, a variable, a function or another
expression.

When you run your code in Test mode, it is possible to view the code in Ladder or
Function Block Diagram. Select Tools> Setup in the menu of the code block where
the code is written (you must be in Test or Online mode when performing this).

Function Blocks

Function blocks are called by a statement consisting of the function block name
followed by a list of named inputs and output parameter value assignments. The
programmer selects any available function block from a list and enters the values.

Timer (IN := switch3,
PT := delayl,
Q => lamp;

The code above shows a function block in ST with input and output parameters.

Execution Rules

The priority of operators determines the order of evaluation of an expression. An
expression in parentheses has the highest priority and the OR expression has the
lowest priority.

Code blocks are executed from left to right, see Figure 16.

Function Block Diagram, FBD

Function Block Diagram (FBD) is a high-level graphical programming language in
which the control function is divided into a number of function blocks or functions

connected by flow signals. A function block may contain simple logical conditions,
timers or counters, but can also provide a complex control function to a subprocess
in a machine or even an industrial plant.

3BSE044222R101 47

Function Block Diagram, FBD Section 2 Programming Languages

FBD describe the POUs in terms of processing elements and displays the signal
flow between them, similarly to electronic circuit diagrams. It represents the
function block and functions by graphical symbols (boxes), their input and output
parameters by pins on the boxes and the assignment of parameters by lines between
the pins. A comprehensive range of basic function blocks and functions is available.

HA code block may contain an unlimited number of pages.

=]
Filling Tank 22
Tankz?_LL >=1 z L 1ve2?_Open J
I-— — |
Tankz?_HL
Indication Tank 2
Tarkz?_HHL i= II FanelZz? HHL
Tank&?_LLL = II Fanel#? LLL
Tankz?_Temp = FarnelZ? HHT
Tarkz?_Lim HT
Tankz?_Temp < Fanelz? _LLT
Tarkz?_Lim LT
=
KN KA 13 LI K | »F|
sode FBD_Code LD _Code
=1

Figure 17. Example of FBD code.

oy

Function block type

AND IN TON Q —
—
Negation symbol — PT ET —
Input parameters Output parameters

Figure 18. Some fundamental rules for drawing function block diagrams.

48 3BSE044222R101

Section 2 Programming Languages Similar to Electrical Diagrams

Similar to Electrical Diagrams

In many ways, a function block can be compared to an integrated circuit (IC), the
building block of today's computers and other electronic devices. Like ICs, function
blocks can provide standard solutions to common control functions. The connection
lines between blocks symbolize signal flow in the system. Electrical engineers who
have experience in designing and analyzing circuit diagrams often have a preference
for programming with FBD.

Boolean Functions and Feedback are Easy to Implement

FBD is very suitable for describing Boolean logic with associated timers, counters
and bistables. Most programmable controllers have such function blocks predefined
in standard libraries for direct use by the programmer. There is no other
programming language where timers and counters are so easy to implement as in
FBD.

Many analog control systems, for example PID controllers, use closed-loop control
where some output signals are fed back and used as inputs in the control algorithm.
The FBD program gives a good overview of signal flow in systems with feedback.

Not Suitable for Conditional Statements

FBD programs have very weak support for conditional statements when one or
more actions are to be repeated for a specified number of times, or only as long as a
certain condition is fulfilled.

This kind of construct is much easier to accomplish in the ST language with one of
the statements FOR, WHILE, REPEAT, CASE or IF.

Functions in FBD

When graphically connecting two functions that have parameters of data type
string, the system will create an intermediate string variable limited to 40
characters (default length of string data type). This means that strings may be
truncated to 40 characters.

3BSE044222R101 49

Standard Function Block Types Section 2 Programming Languages

Basic Functions

The following basic FBD language functions correspond to the operators of textual
programming languages.

e Assignment functions (move, :=)
e Boolean functions (not, and, &, xor, or, >=)
. Arithmetic functions (expt, mul, div, add, sub, mod, abs)

. Relational functions (<, >, <=, >=, =, <>).

Connections

In the Function Block Diagram editor, the parameters of functions and function
blocks are shown as pins on the boxes. The assignment of values (variables and
constants) to parameters is shown by lines connecting the pins.

If a parameter is assigned to another parameter, one of them must be an output
parameter and the other an input parameter (an output parameter can be assigned to
any number of input parameters but never to another output parameter).

All function blocks have a built-in algorithm for calculating output values based on
the status of the inputs.

When working with Boolean signals, negated inputs or outputs can be shown using
a small circle placed at the corresponding line, close to the block symbol. Some
systems use a NOT function block instead of the circle.

Execution Rules

The evaluation of parameter values corresponds to the execution order of the
function blocks and functions within the POU. The execution order is represented
by the order of the graphic symbols (boxes) in FBD, from left to right, and from top
to bottom. You can change the execution order later, by moving the selected
function blocks and functions.

Standard Function Block Types

The IEC 61131-3 standard defines a small repertoire of rudimentary standard
function block types. These are predefined in most of today's programmable

50 3BSE044222R101

Section 2 Programming Languages Standard Function Block Types

controllers. Standard function blocks are often used to construct user-defined
function blocks. The most commonly used blocks are:

¢ Boolean conditions like AND, OR, XOR and NOT
* Bistables

* Edge detectors

e Timers

. Counters

Bistables

Two types of bistables are available, SR and RS. Both of them have two Boolean
inputs and one output. The output is set (SR) or reset (RS) as a memory when the
triggering input (S1 or R1) momentarily becomes true. When the other input
becomes true the output returns to its initial state. If both inputs are true the SR will
be set while the RS will be reset.

SR bistable RS bistable
SR RS
— S1 Ql— —S Ql—
— R — R1

S| mo L
o1_|—|ﬂ_ 01_|_Hf
R s

Figure 19. SR and RS bistable symbols with their corresponding functions below.

Edge Detectors

There are two edge-detecting function blocks, Rising edge trigger (R_TRIG) and
Falling edge trigger (F_TRIG), which are used to detect the changing state of a
Boolean input. The output of the blocks produces a single pulse when a transition
edge is detected.

3BSE044222R101 51

Standard Function Block Types Section 2 Programming Languages

When the input changes state, according to the type of edge detector, the output is
true during one function block execution. After that the output remains false until a
new edge is detected.

Rising edge detector Falling edge detector
R_TRIG F_TRIG
— CLK Ql— — CLK Q11—
ck I L CLk __ [+ L .
o 1 @ L

Figure 20. Edge detectors create a single pulse with the same duration as the
execution time of the function block.

Timers

Timers are among the most used function blocks in a control application. Whenever
there is a need for a time delay between a change of state and the corresponding
action a timer can be used. In most programmable control systems the timing is
based on the CPU system clock, which means that the specified time intervals are
very precise.

There are three different types of timer function blocks, pulse timers (TP), on-delay
timers (TON) and off-delay timers (TOF). All of them have a Boolean input called

IN, a Boolean output called Q, an input of type time called PT and an output of type
time called ET.

The required delay (or pulse width) is specified on input PT (Preset Time) while the
actual elapsed time is shown on output ET (Elapsed Time).

A pulse timer is normally used to generate output pulses of a specified duration.

When input IN changes to the true state the output Q follows and remains true for a
duration specified by input PT. The elapsed time ET is increased linearly as long as
the pulse output is true. When the pulse terminates, the elapsed time is held until the

52

3BSE044222R101

Section 2 Programming Languages Standard Function Block Types

input changes to false. Note that the output Q will remain true until the pulse time
has elapsed, even if the input changes to false.

Both delay timers are used to delay an output action by the specified time PT when
a certain condition becomes true.

The on-delay timer delays the activation of an output. When the input IN becomes
true the elapsed time at output ET starts to increase. If the elapsed time reaches the
value specified in PT, the output Q becomes true and the elapsed time is held. The
output Q remains true until input IN becomes false. If input IN is not true longer
than the specified delay in PT, the output remains false.

The off-delay timer delays the deactivation of an output. When the input IN
becomes false, the elapsed time starts to increase and continues until it reaches the
specified delay given by PT. The output Q is then set to false and the elapsed time is
frozen. When input IN becomes true the output Q follows and the elapsed time is
reset to zero.

Pulse timer On-delay timer Off-delay timer
TP TON TOF
— IN Q — —IN Q — —IN Q—
— PT ET—— — PT ET—— — PT ET——

[I | [JE R I I S 1 Y N I Y)

> PT = = PT = =>PT< =>PT< >PT< >PT<
o [L T L a__ L[a
ET—— L _—1L ET— L1 1 ET— L7

Figure 21. Timing diagrams for the three different types of timer function blocks.

Counters

Counters are another commonly used type of function block. These are designed to
be used in a wide range of applications, for example counting pulses, revolutions,
completed production batches, etc.

There are three types of counter blocks, up-counters (CTUs), down-counters
(CTDs) and up-down counters (CTUDs). CTUs are used to indicate when the
counter has reached a specified maximum value. CTDs indicate when the counter

3BSE044222R101 53

Standard Function Block Types Section 2 Programming Languages

reaches zero, on counting down from a specified value. CTUDs can be used to both
count up and count down and have two outputs indicating both maximum value and
ZEero.

A CTU has three inputs and two outputs. A CTU block counts the number of pulses
(rising edges) detected at the Boolean input CU. The input PV (Preset Value) of
data type integer defines the maximum value of the counter. Each time a new rising
edge occurs on CU the output CV (Counter Value) of type integer is incremented by
one. When the counter reaches the value specified in PV, the Boolean output Q
becomes true and counting stops.

If necessary, the Boolean input R (reset) can be used to set the output Q to false and
to clear CV to zero.

Up counter
oTU o1 ¥ N T I O O O T
bool —| cuU Q —— bool Q | [
bool — R R _[l M
int —{PV CVl— int Cv=Pv
cy |CVv=0

Figure 22. Example of a CTU counter block with preset value PV=35.

The CTD is very similar to CTU with three inputs and two outputs. A CTD counts
down the number of pulses detected at the Boolean input CD. The input PV is used
to specify the starting (integer) value of the counter. Each time a new rising edge
occurs on CD the output CV is incremented by one. When the counter reaches zero,
the output Q becomes true and counting stops.

If necessary, the Boolean input LD (load) can be used to clear the output Q to false
and to load the output CV with the value specified in PV.

Down counter

co —J LTI LI LI

CTD
bool — CD Q —— bool Q 1
bool —| LD LD _I| I
int — PV CVL— int Cv=Pv
cv CV=0

Figure 23. Example of a CTD counter block with preset value PV=>5.

54 3BSE044222R101

Section 2 Programming Languages Ladder Diagram, LD

The CTUD is a combination of the other two counter blocks. It has two Boolean
inputs, CU and CD, used for counting up and counting down the value in output
CV. Similarly to the two other counters, the integer input PV defines the counter's
maximum value. When the counter reaches the value specified in PV the output QU
is set to true and counting stops. In a similar way, the output QD is set to true and
counting stops when the counter reaches zero.

If necessary, the input LD can be used to load the value from PV to the output CV
while the input R can be used to clear the output CV to zero.

Up-down counter

cu_i+ . =+ & IuIL
CcTUD A
bool—cu Qul—bool CD_JL. PLILIL. . . .

bool — CD QD —— bool Qu . .
bool — R o]—]' ' Z ,—
bool — LD CV|— int = : Do
int —{PV o [
R N S S |
CV=PV GQu=RVv
cv CV=0

Figure 24. Example of a CTUD counter block with preset value PV=3.

The CTUD is often used in applications where there is a need to monitor the actual
number of items in a process. It could, for example, be used to count the number of
products placed on and taken off a store shelf.

Ladder Diagram, LD

Ladder Diagram (LD) is a graphical language. LD describes the POUs in a way
similar to relay logic. In LD, you can implement complex AND/OR logic based on
the idea of power flow from a power rail through relay contacts and coils, to the
other power rail. You can also add function blocks and functions to the power rails
and LD presents them similarly to a Function Block Diagram (FBD). The use of the
LD editor is especially advantageous with small systems, and if you are familiar
with electrical wiring diagrams and relay control.

3BSE044222R101 55

Ladder Diagram, LD Section 2 Programming Languages

I - P |
[
Filling Tank 24
Yalvezd 0
Tankid LL Tankid HL L
|1 14 f|
aool
I ¥l \
alveZd 0
en
Indication Tank £ o
Tankz4 HH Fanelzd H
L HL
ooog i i {}
Tankza LL Panslzg L
L LL
aonz I I l’\
1 \/
3= <
aao4 ER ER {}
TarkZd_Tamp— PanelZd HHT Tank:d Temp— Pansl24 LLT
Tark4 Lim HI— Tank£4 Lim LT—
-
3| TN R [TR [[F

ade FED_Code

LD_Code

Figure 25. Example of LD code.

Contacts represent inputs from the process and coils outputs. An LD diagram is
limited on both sides by vertical lines, called power rails. The power rails serve as a
symbolic electrical power supply for all the contacts and coils that are spread out
along horizontal rungs.

Each contact represents the state of a Boolean variable, normally a transducer, but
sometimes also an internal variable in the control system. When all contacts in a
horizontal rung are made, i.e. in the true state, power can flow along the rail and
operate the coil on the right of the rung. The coil normally represents physical
objects like a motor or a lamp, but may also be an internal variable in the control
system.

There are two types of contacts, normally open and normally closed. Contacts
which are normally open present a true state (Boolean variable is 1) when they are

56

3BSE044222R101

Section 2 Programming Languages Easy to Understand

closed. Normally closed contacts present a false state (Boolean variable is 0) when
they are open.

In analogy with electrical circuits, contacts connected horizontally in series
represent logical AND operations. Parallel contacts represent logical OR operations.

It is possible to create LD programs that contain feedback loops, where the variable
from an output coil is used as an input contact, either in the same or in other logical
conditions. In a real-world relay circuit this is equivalent to using one of the relay's
physical switches as an input contact. A person with experience in computing would
probably call this a memory bit.

start stop

fan
| | I/I)
/1 U/

Figure 26. Feedback loop in an LD program. The fan starts with an impulse on
contact start and continues to run until the contact stop is opened.

Easy to Understand

Programming with LD can be learnt relatively quickly and the graphical
presentation is easy to follow. The method is particularly easy to understand by
people who are familiar with simple electrical or electronic circuits.

3BSE044222R101 57

Weak Software Structure Section 2 Programming Languages

Marme Current value Data Type Attribu~]
— Switchl true boal retain
— Switch2 falze boal retain
— Switch3 true boal retain
— Alarm_On true boal retain
— Low _Level [false bool retain
— High_Level [false bool retain
— Wotaor? true bool retain
— MotorZ falze bool retain
5 ['¥ [, variables 4 Function blocks 7 e | Ll_l
T o el hicco: =
— ———T
Switcoh?
o
]

Hich Jesre])

B L.
4] [\ Code / KN |LIJ

|Ln1, Col1 [[o

Figure 27. Status indication of an executing LD program.

LD programs are very popular among maintenance engineers since faults can easily
be traced. Most programming stations generally provide an animated display
showing the live state of transducers while the programmable controller is running.
This provides a very powerful online diagnostics facility for locating incorrect logic
paths or faulty equipment.

Weak Software Structure

Ladder programming is a very effective method for designing small control
applications. With increasing processing power and memory size with today's
programmable controllers, the method can also be used to construct large control
systems. Unfortunately, large ladder programs have several serious drawbacks.

Since most programmable controllers have limited support for program blocks, or
subroutines, it is difficult to break down a complex program hierarchically. The lack
of features for passing parameters between program blocks makes it difficult to
break down a large program into smaller parts that have a clear interface with each

58

3BSE044222R101

Section 2 Programming Languages Limited Support for Sequences

other. Usually, it is possible for one part of a Ladder Diagram to read and set
contacts and outputs in any other part of the program, which makes it almost
impossible to have truly encapsulated data.

This lack of data encapsulation is a serious problem when large programs are
written by several different programmers. There is always a danger that internal data
in one block can be modified by faulty code in other program blocks. Each
programmer, therefore, has to be very careful when accessing data from other
program blocks.

There are also problems in using structured data with ladder programs since data are
normally stored and addressed in single memory bits. Many control applications
often have a need to group data together as a structure. Some sensors provide more
than one variable that has to be recorded by the control system. Apart from the
physical value measured by the sensor, the application sometimes needs to disable
the sensor, place it in test mode, record the time when the sensor is active and also
raise an alarm if the sensor is activated longer than a certain prescribed period.

All of this information from the sensor should ideally be handled as a single
structure that can be addressed using a common name. In most ladder programs
such data is often spread out among different ladder rungs. Without a data structure
the programmable controller has no provision for warning the programmer when
incorrect data are accessed.

Limited Support for Sequences

Most control applications have a need to divide the function into a sequence of
states. Each state represents a unique condition in the plant being controlled.
Normally, only one state is active at a time.

When sequences are constructed with ladder programming the normal method is to
assign one internal memory bit to each state and to use contact conditions from the
transducers to trigger transitions between the states. Each state consists of a
feedback loop using the memory bit as an alternative condition for remaining in the
state. The feedback loop of a state is normally broken by the memory bit of a
succeeding state. To get real-world actions the memory bits are used as conditions
in separate rungs to control the outputs.

3BSE044222R101 59

Difficult to Reuse Code Section 2 Programming Languages

state_3 transducer_a state_1
| 1 | | M)
— 1 — 1 Y
state_1 state_2
| | | /1
— 1 ﬁ/ —
state_1 transducer_b state_2
I I A M
1 1| U/
state_2 state_3
| | |/l
state_2 transducer_c state_3
|] | 1 M)
11 11 U/
state_3 state_1
| 1 1/1
— 1 ﬁ/ —
state_1 output_a
| |)
I /
state_2
| |
11
state_3 output_b
| 1 M
11 \/

Figure 28. Sequence program with three states controlling two outputs.

From the above example it is obvious that ladder programs with sequences can
become very large and difficult to maintain. The most obvious problem is that
control of the memory-based sequence model is mixed with the application logic so
the behavior of the complete program is difficult to understand and follow.

Difficult to Reuse Code

In many large control systems similar logic strategies and algorithms are used over
and over again. A common application is to detect fire by using two or more
transducers with a comparison algorithm to eliminate false alarms. Such systems

60 3BSE044222R101

Section 2 Programming Languages Functions in LD

consist of a large number of similar ladder rungs with only minor modifications to
read different contacts and to set different outputs. This can result in very large,
unstructured programs.

Unfortunately, very few programmable controllers have an option for defining
standardized ladder blocks that can easily be called upon many times with different
inputs and outputs.

Functions in LD

Basic Functions

The basic functions in the LD language are the same as the basic functions in FBD,
see Basic Functions on page 50.

Connections

You can assign variables to coils of rungs and output parameters of function blocks
and functions. The variables assume the values of the corresponding coils and
output parameters. You can assign values to contacts of rungs and input parameters
of function blocks and functions. The value can either be a variable, such as one
with the value of an output parameter, or a constant. The assignment of parameters
is shown by variable names, constant names and lines between the pins on boxes
symbolizing the function blocks and functions.

Execution Rules

The evaluation of parameter values corresponds to the execution order of the rungs,
function blocks and functions within the POU. The execution order is represented
by the order of the rungs in LD from the top to the bottom. You can change the
execution order later by moving the selected rungs up or down within the POU, for
example, by cutting and pasting, or by moving them in the Structure pane.

The execution order of function blocks and functions within a rung is defined by
their position. They are executed from left to right, as the current flows from the left
power rail to the right one.

3BSE044222R101 61

Instruction List, IL Section 2 Programming Languages

Instruction List, IL

Instruction List (IL) is a low-level language in which the instructions are listed in a
column, one instruction on each line. It has a structure similar to simple machine
assembler code.

IL has been chosen as the preferred language by a number of PLC manufacturers for
their small to medium-sized systems. The lack of structured variables and weak
debugging tools make the language less suitable for larger systems.

HIL code can be written in Microsoft Excel, and then copied and pasted into the
Instruction List editor code pane in Control Builder. Note, however, that you can
only have access to online help (use the F1 key) in the editor of Control Builder.

Label |Instructi0n |Operand |Descripti0n ﬂ
1 [Filling Tank 22
2 LD Tank22_LL
3 OR Walve22_Open
4 ANDN Tank22_HL
5] ST Walve22_Open
B |Indication_Tank_22
7 LD Tank22_HHL
g 3T Panel22_HHL
g
10 LD Tank22 LLL
11 3T Panel22_LLL
12
13 LD Tank22_Temp
14 GT Tank22_Lirm_HT
15 3T Panel22_HHT
16
17 LD Tank22_Temp
18 GT Tank22_Lirn_LT
19 3T Panel22_LLT
jnL ST Code p IL_Cade 4 FBD Code # LD_Code KN ;|_I
[Row 1, Cal 1 [MuM [4

Figure 29. Example of IL code.

Best System Performance

IL is ideal for solving small straightforward problems. In the hands of an
experienced programmer it produces very effective code resulting in applications
that are optimized for fast execution.

62 3BSE044222R101

Section 2 Programming Languages Weak Software Structure

There is also another reason for using IL in order to optimize system performance.
During a period of several years a huge amount of software has been written and
thoroughly tested. Such software can be modularized into libraries and reused even
by programmers with no detailed knowledge of the internal behavior.

Weak Software Structure

Since IL is a low-level language, great care should be taken in structuring the code
so that it is easy to understand and maintain. It is very important that IL. programs
are well documented since conditional jumps will otherwise be very difficult to
follow.

The behavior of the result register, with only one value available at a time, makes it
difficult to work with structured data variables. Most compilers have no automatic
function for checking whether the RR contains correct data for the actual instruction
code. Therefore, it is up to the programmer to ensure that each instruction is given
correct variable data.

Machine-dependent Behavior

Of all the five IEC languages, IL has been found to be the most controversial.
Unfortunately, the semantics, i.e. the way in which the instructions operate, are not
fully defined in the standard. For example, it is unclear how the result register stores
values of different data types. Normally, the RR is not intended for storing
structured data, which means that it is very difficult to obtain consistent behavior
when working with arrays or strings.

Another problem is that the control system behavior for error conditions is not
defined. This means that different system types may respond differently if the
programmer uses inappropriate data types. Errors can normally only be detected
when the system is running the application.

3BSE044222R101 63

Functions in IL

Section 2 Programming Languages

Functions in IL

Example

Instructions
The following instructions are available in the IL language.
e Load and store (Id, ldn, st, s, r)

. Return (ret, retc, retcn)

* Jump (jmp, jmpc, jmpcn)

o Function block call (cal, calc, calcn)

Expressions

Expressions available in IL are boolean expressions (and, andn, or, not, xor, xorn),
arithmetic expressions (add, sub, mul, div), and relational and equality expressions
(gt, ge, eq, I, le, ne). An expression using these operators always results in a single
value. An expression contains operators, functions and operands. The operand can
be a value, a variable, a function or another expression.

Execution Rules

The instruction list is executed line by line, regardless of what is on the next line, as
long as there are no parentheses.

IL programs are often written on a spreadsheet-like form with one column for
operators and another for operands. Labels, used to identifying entry points for jump
instructions, are placed in their own column to the left of the instruction. The
instructions only need to have labels if the program contain jumps. Comments are
placed in a fourth column to the right of the operand. Comments are enclosed by
asterisks (*comment*). It is strongly advisable to add comments to all instructions
during programming. Large IL programs without comments are very difficult to
follow.

64

3BSE044222R101

Section 2 Programming Languages

Result Register

Table 4. Example of an IL program for controlling the speed of a motor.

Label Operator Operand Comment

LD temp1 (*Load temp1 and*)
GT temp2 (*Test if temp1 > temp2*)
JMPCN Greater (*Jump if not true to Greater®)
LD speed1 (*Load speed1*)
ADD 200 (*Add constant 200%)
JMP End (*Jump unconditional to End*)

Greater: LD speed2 (*Load speed2*)

To improve readability, IL instructions are normally structured so that labels,
operators, operands and comments are put in fixed tabulated positions.

Result Register

The result register (RR) is of central importance in IL. This register is also called the
IL register or accumulator. Current data and the results of calculations,
comparisons, loading of variables, etc., are stored in this register.

In the Instruction List (IL) language, literals are assigned the shortest data type
that can hold this literal. This might cause unwanted truncations during
calculations. To avoid this, use variables with the attribute constant.

Most operations consist of calculation between the result register and the operand.
The result of an instruction is always stored in the result register. Most programs
start with the instruction LD, which loads the accumulator with a variable. The
result register changes its data type automatically during program execution in order
to fit the value that needs to be stored.

Programmable controllers normally only have one result register. This must
naturally be taken into consideration by the programmer when writing code. The
program example in Table 4 first loads the RR with a real variable. The second
instruction compares RR with another variable which results in a Boolean TRUE or
FALSE result in RR. The conditional jump instruction JMPCN uses the Boolean

3BSE044222R101 65

Sequential Function Chart, SFC Section 2 Programming Languages

value in RR as a condition for either continuing with the next instruction (RR false)
or jumping to the label Greater. In both cases, the next instruction loads RR with a
new real value. The final instruction stores the RR in a real variable called motor
controlling the speed of the motor.

Sequential Function Chart, SFC

The Sequential Function Chart (SFC) programming language allows the user to
describe the sequential behavior of the control program graphically. This concept
enables all control actions for a process to be described in one compound sequence
structure, even if it involves several parallel action chains. Furthermore, sequences
can be hierarchical, that is, action chains can be grouped to give a clear, high-level
presentation of the process control unit.

A sequence is a unit with a complete sequence, surrounded by an unconditional
closed loop; the first step is re-activated when the sequence is complete. A sequence
can be divided into separate types of structures. There are two types of structures,
sequence selection and simultaneous sequence. It is possible to structure the
sequence view into several hierarchical levels with the subsequence function.

66

3BSE044222R101

Section 2 Programming Languages Powerful Tool for Design and Structuring

PI

+ Tr1

s2

+ Tr2 + Start_mixing

S3 ‘ ‘

Tra Heating Agitation

Tr5

Figure 30. Example of a sequence structure. In the box Init P1 contains code, N and
PO are empty.

Powerful Tool for Design and Structuring

SFC is a very suitable top-level design tool in the early phase of a project, but can
also be used to describe the more detailed behavior of the plant objects being
controlled.

The SFC's graphical metaphor can be used from the beginning, to give an initial
representation of the overall behavior of the system. Since the description is very
easy to follow SFC is a very suitable means of communication between the
customer and the programmer.

In the early phases of a project, there are normally many aspects of the system
behavior that have not been defined. By using an easy-to-follow tool for the
preliminary specification the number of misunderstandings between customer,
system designer and programmer can be reduced to a minimum.

3BSE044222R101 67

Other Programming Languages are Needed Section 2 Programming Languages

The SFC schemes produced in the first phase of a project can be further specified
and refined as new information becomes available. Actions associated with overall
steps can then be described via other nested SFC schemes.

The good continuity of SFC from the initial phase to the refining design phases
makes it very popular among system designers and programmers.

Other Programming Languages are Needed

Even though SFC has many advantages as a design and structuring tool it is not a
complete programming language. Therefore, the transition conditions and action
descriptions have to be programmed with one or more of the other four IEC
programming languages.

Most experienced programmers prefer the ST language as a complement to SFC.
Therefore, the vast majority of programmable controllers use ST as the default
language for detailed descriptions in SFC schemes.

Functions in SFC

Basic Functions

The SFC editor contains a number of commands for creating steps, transitions,
sequence selections, new branches, jumps, make subsequence etc. Basic elements in
a sequence are steps and transitions. Each transition has an associated boolean
transition condition.

The actions in a step are written in structured text, ST. To see whether the actions
P1, N or PO contain any code or not, there is an indication for each action type (P1,
N and PO0) on the right-hand side part of the step-box (see Figure 30). The text color
indicates the following:

* White text means that the block exists, but is empty.
. Black text means that the block exists and contains code.
] No color means that the action block does not exist.

Double-clicking on a box expands the information, as shown in Figure 31.

68

3BSE044222R101

Section 2 Programming Languages Functions in SFC

P1 | Init_P1

Tr1
Figure 31. Expanded mode of a box

Sequential Rules

The sequence loop is always closed. The last transition is always connected to the
first step. Execution continues from the last step to the first step when the last
transition condition becomes true.

Transitions

The transition from one step to another is controlled by transition conditions, which
are boolean expressions including process signals.

Automatically Generated Variables

Examples of variables that are automatically generated for a sequence, when the
program is compiled: SequenceName.Reset, SequenceName.Hold,
SequenceName.DisableActions and SequenceName.Stepname

Online Functions

In online mode, code and the variable values are displayed in the program editor.
Online commands in the menu bar and tool bar buttons for the code are the same as
in the other language program editors. Some functions are only available in the
online mode, for example:

. Disable Actions
. Show Actions

. Block Transitions

3BSE044222R101 69

Chart Structure Section 2 Programming Languages

Chart Structure

SFC is a method of dividing the control function into a series of steps represented by
rectangular boxes and connected by vertical lines. Each step represents a physical
state of the system being controlled. On each connecting line there is a horizontal
bar representing a transition. The transition is associated with a transition condition
which, when true, deactivates the step before the transition and activates the step
after the transition. The execution flow is normally down the page, but SFC can also
branch backwards in the chart.

Each step is normally associated with one or more actions. These actions describe
the actual physical behavior in the plant, e.g. open valve, start motor, and so on. An
action can, in some editors, be described directly in the associated step rectangle.
However, in most editors the actions are described as separate program statements
(normally in ST language) in other code blocks or in a separate editor window
associated with the step. An important consideration in SFC programs is that only
the code in active steps is executed.

All SFC sequences must have an initial step identifying where program execution
starts after system initialization. This step is drawn as a rectangular box with double
border lines. The initial step remains active until the following transition enables
flow to the next step.

Some editors allow the programmer to describe short transition conditions directly
on the SFC, close to the corresponding bar. However with more complex conditions
it is better to put the code in a separate window.

When the sequence has finished, the flow can be terminated by a step with no
associated action. If necessary, the sequence can also repeat the same behavior
cyclically. Cyclic execution is enabled by a conditional branch backwards to the
first step in the flow. To avoid cluttering the SFC with crossing lines, branches are
drawn with a starting arrow where the branch begins and a concluding arrow at the
step where the branch ends up. In order to clarify the flow the transition name is
written at both places.

70 3BSE044222R101

Section 2 Programming Languages Steps and Transitions

| - Initial step
Transition

e Tr1 Transition conditions with code
in other windows

— Tr2 Steps with code in other windows

— Tr3

— Tr4

m—te Tr5

—t— Tr6

Figure 32. Example of an SFC program for an automatic drilling machine. Note the
cyclic execution being enabled by the Tr6 transition condition.

Steps and Transitions

All steps within an SFC must have unique names and may only appear once in each
flow. Every step has an automatically defined Boolean Step active flag variable that
is true while the corresponding step is active. The Step active flag is given the same
name as the step plus the suffix X, e.g. Drill. X. It can be used within the current
SFC to control the logical flow.

Two adjacent steps must always be separated by a transition condition which
produces a Boolean result. A transition that always occurs can be expressed by the
Boolean literal TRUE. The transition conditions may contain any kind or
complexity of statements, variables and parameters, as long as the result can be
expressed as a Boolean variable.

3BSE044222R101 71

Action Descriptions Section 2 Programming Languages

Action Descriptions

Steps in an SFC are used to describe the states of a controlled plant or machine.
When the programmable controller executes an SFC program the state model only
works as an internal memory representation of the control function. In order to get
real-world actions each state has one or more action descriptions containing
program code controlling the physical objects. Any of the four IEC languages can
be used to describe the behavior of an action.

Action descriptions are normally placed in rectangular boxes that are attached to the
step with a connection line. To avoid overloading the SFC with too much detailed
information the boxes can be folded in or out. Most editors use a separate window
or another code block for specifying the actions.

+ P1| Drill_P1 _-"| Drill_Motor := Drill.T;

Drill — N Drill_N

T PO| Dril_LPO__ | <.

Figure 33. Example of a step with the associated actions folded out and one of them
described in a separate editor window.

Each action can have one or more action qualifiers that determine when and how the
action is executed. Most editors support the following three action qualifiers.

* The N action qualifier (Non-stored) causes the action code to be executed
continuously as long as the step is active.

* The P1 (Pulse rising edge) action qualifier causes the action code to be
executed once when the step becomes active.

* The PO (Pulse falling edge) action qualifier causes the action code to be
executed once when the step becomes inactive.

To use one or more of the action qualifiers the programmer writes the code
statements in the associated editor window. It is not necessary to use all three action
qualifiers. Most sequences use the N action qualifier, but it is possible to leave all
three qualifiers empty resulting in a step without any actions.

72

3BSE044222R101

Section 2 Programming Languages Sequence Selection and Simultaneous Sequences

Sequence Selection and Simultaneous Sequences

In its simplest form, an SFC program consists of a series of steps in a closed-loop
executed continuously. This type of system (see example in Figure 32) has only one
main flow path.

In many systems there is a need for two or more branches in the sequence flow,
often referred to as sequence selection. This is required in many batch process
applications. In the example below with divergent paths, each branch starts and
ends with a transition. When either of the transition conditions Tr2 or Tr3 becomes
true, the corresponding branch is selected and execution continues along that path.
Note that only one branch can be executed at a time. If more than one transition
condition is true the left-most branch has the highest execution priority. When the
last transition in the selected branch becomes true the flow converges back to the
main flow.

]
[st]

— Tr1

S2
—m Tr3
S3 S4
— Tr4 = Tr5

S5

:‘— Tr6

Figure 34. Example of a sequence selection with two branches.

We have earlier seen how divergent paths can be used to execute alternative paths in
sequences. An important characteristic of such parallel branches is however, that
only one step in one of the branches may be active at any time.

However, in many batch process applications there is a need for simultaneous
sequence structure with several branches. The main sequence is used for primary
process control, while secondary parallel sequences are used to monitor that the

3BSE044222R101 73

Subsequences

Section 2 Programming Languages

process is running normally. Such parallel sequences can e.g. check that plant
temperatures and pressures are within required limits, otherwise the control system
may shut down the process.

In the example below, all three divergent branches start with a common transition
condition. Execution then continues in parallel and independently along all three
paths until convergence is reached. Both the divergent and the convergent flow in
simultaneous sequences are drawn with a pair of lines to distinguish the construct
from a sequence selection. The transition condition that succeeds the simultaneous
sequence structure will not be tested until all the branches have finished execution,
that is when the last step of each branch is active.

— T2

[I

Water Press Monitor

—_— T3 == Trd

Heat Temp

Tr6

Figure 35. Example of a simultaneous sequence with three continuous branches.

Subsequences

One of the main uses of SFC is as a tool for developing the fop down design of the
control function in a complex plant. Most processes can be described by a relatively
small number of main states, each representing a subprocess with a number of minor
states.

74

3BSE044222R101

Section 2 Programming Languages Advice on Good Programming Style

Some editors provide a method for dividing large SFC programs into a number of
subsequences, each represented by a general symbol. A subsequence may in turn
contain other subsequences which provides a powerful tool for structuring the
overall control function into any number of hierarchical levels. This allows attention
to be focused on either the overall behavior of the entire plant or on the detailed
operation of the controlled process objects.

A subsequence usually contains sequence parts that perform a set of logically
related actions. Steps and actions from different hierarchical levels are never visible
at the same time. To study the inside of a subsequence the programmer has to step
into the subsequence which changes the SFC view, so that only the contents of the
selected subsequence are displayed.

Advice on Good Programming Style

Names of steps, transitions and actions should be unique within each program
organization unit (e.g. function block). It as also wise to use meaningful names
whenever possible.

Try to keep all SFCs as small as possible and focused on the overall behavior. It is
better to put detailed behavior in the action blocks or in other SFCs at a lower
hierarchical level.

It is good practice to reduce the interaction between simultaneous sequences to a
minimum.

Never allow step actions from different simultaneous sequences to change the same
variables.

Avoid using constructs in which a divergent path branches out of a simultaneous
sequence since this may lead to a sequence that never completes or behaves
unpredictably.

3BSE044222R101 75

Advice on Good Programming Style Section 2 Programming Languages

76 3BSE044222R101

Section 3 Programming in Practice

Introduction

This section contains examples and practical advice on:

How to organize your code, see Organizing Code on page 77.

How to use the code sorting function to optimize execution and how to solve
code loops, see Code Sorting on page 102.

How to optimize your code, see Code Optimization on page 116.

How to tune your tasks to optimize execution, see Task Tuning on page 124.

Organizing Code

This subsection contains advice on how to implement the methods for organizing
code, as well as more detailed information about data flow and execution designed
to help you understand how to solve various programming problems:

For advice on how to program using function blocks, see Programming with
Function Blocks on page 78.

For information on function block calls, see Function Block Calls on page 80.

For information on function block execution, see Function Block Execution on
page 81.

For information on function block code sorting, see Function Block Code
Sorting on page 84.

3BSE044222R101

77

Programming with Function Blocks Section 3 Programming in Practice

» For advice on how to create your own function block and control module types,
see Self-Defined Types on page 93.

* For an example of how to use structured data types, see Structured Data Type
Examples on page 97.

For a discussion of which method (control modules or programs) to use when
organizing your code, see Code Organization on page 19 in Section 1, Design
Issues.

Programming with Function Blocks

This subsection provides advice when programming with function blocks. For an
introduction to function blocks, refer to the Basic Control Software manual.

Functions and Function Blocks

There are a great number of predefined functions and function block types available
in the Control Builder standard libraries. Note that library functions and function
blocks are available in all five programming languages. The main differences
between functions and function blocks are described below.

Functions

* always return a (single) value at the time they are executed,

* can be used in expressions,

e do not retain their old values from one scan to the next,

* always give the same value when the input parameters have the same value,
e cannot be customized.

Function Blocks

* have both input and output parameters,

* can provide several output values using parameters,

. retain their values, from the last call, when called again, and can give different
output values even if the input values are the same,

* have to be used as function blocks of a function block type definition,

e can be customized.

78

3BSE044222R101

Section 3 Programming in Practice Programming with Function Blocks

Function Block Parameters

Function blocks have three types of parameters, In, Out and In_out. In and Out
parameters are passed by value, which means an /n parameter makes a copy of the
actual variable connected to the parameter, to a local representation inside the
function block, and an Out parameter makes a copy of a local representation inside
the function block to the actual variable outside the function block. In_out
parameters are passed by reference, which means only a reference to the actual
variable outside the function block is passed inside the function block, that is, no
local representation of the parameter exists inside the function block. Performing
operations on an In_out parameter inside a function block, thus means performing
the operations directly on the actual variable connected to the function block, while
operations on /n and Out parameters act on local copies inside the function block.

ﬂ The In_out parameters are direct references and are not copied as are In or Out
parameters. In_out parameters can be compared with parameters of control
modules, they are all direct references.

For more information on passing data, see the Basic Control Software manual.
Some characteristics of the different parameter types are listed below.

* All parameter types (In, Out and In_out) occupy memory when a function
block of the function block type is created. An In_out parameter always
occupies 4 bytes, while an In or Out parameter occupies the same amount of
memory as the corresponding parameter data type.

* When a function block is called, all connected parameters are copied to/from
the internal representation inside the function block.

. An In or Out parameter can be left unconnected in a call, while an In_out
parameter requires an actual parameter being connected in each call. An
unconnected /n or Out parameter requires no data copying.

* In and Out parameters can be supplied with initial values, but not In_out
parameters. The initial value will be the value of unconnected In or Out
parameters inside the function block.

* The extensible parameters (multi-parameters) have a general limit of 128
parameters in each function block. However, a few function blocks have a
lower limit, described in the online help.

3BSE044222R101 79

Function Block Calls Section 3 Programming in Practice

Conclusions

Using an In_out parameter instead of an /n or Out parameter, will result in better
execution time, and memory performance, if the data type size of the parameter is
greater than 4 bytes (for example, for the string data type, and structured data type).
For simple data types (for example dint, real, bool, dword) no improvement in
performance is gained by using the In_out parameter type, and it is then better to
select either the In or Out parameter type depending on how the parameter is to be
used.

In and Out parameters can be assigned initial values. These can be used together
with the possibility of leaving /n and Out parameters unconnected. When writing
the function block type, you can, for example add an /n parameter that can be
optionally connected when calling a function block of the function block type. The
parameter can then have a suitable initial value, being the default value of the
parameter that is used inside the function block, if the parameter is left unconnected.
Note, however, that the parameter will not be re-initialized if it is unconnected in
one call, but has been connected (or assigned a value in another way) earlier. The
parameter of the function block will only be initialized once when the controller is
started (at warm restart, or at cold restart) depending on the parameter attribute
(retain or coldretain).

Function Block Calls

When a function block is called, the /n parameters will be copied (and references to
the In_out parameters) before the function block is executed, and the Out
parameters will be copied after the function block has been executed. Since it is
possible to omit /n and Out parameters in a call, this is a way of increasing
execution speed. For example, if an /n parameter only changes its value
occasionally, it can be omitted in the call and be replaced by a direct assign to the In
parameter before the call, see example below.

If UpdateIndata then

MyFB.Inl := Indatal;
MyFB.In2 := Indata2;
end_if;
MyFB(InOutl := InOutdatal,
InOut?2 := InOutdata2) ;

80

3BSE044222R101

Section 3 Programming in Practice Function Block Execution

If ReadOutdata then

Outdatal := MyFB.Outl;
Outdata2 := MyFB.Out2;
end_if;

It is possible to omit /n and Out parameters in a function block call. The In
parameters of MyFB will only be changed occasionally in this example.

The method of directly accessing In and Out parameters by dot notation (for
example MyFB.Inl or MyFB.Outl) in the code can be used to save a local variable
when connecting two function blocks, see below.

MyFirstFB(Inl := Indatal,
Outl => LocalVar);

MySecondFB(Inl := LocalVar,

Out => Outdatal) ;

The code can be written without using the intermediate
variable LocalVar:

MyFirstFB (Inl := Indatal);

MySecondFB (Inl := MyFB1.0Outl,
Out => Outdatal) ;

Function Block Execution

When a function block is executed, the code blocks are executed from left to right.
When the last code block has been executed, function block execution is complete,
and the execution is returned to the calling unit.

Since a controller executing an application, often has its execution time divided
between several tasks, it is important to remember that task switching may occur.
Task switching occurs when a task with higher priority is ready to execute while a
lower priority task is executing. However, the low priority task can not be
interrupted anywhere in the code, it must reach a scheduling point. It is therefore
important to know where scheduling points occur when programming, for example,
a function block type, since function block execution only can be interrupted by
other tasks at these points.

3BSE044222R101 81

Function Block Execution Section 3 Programming in Practice

The following are defined as scheduling points during the execution of an
application:

e at the beginning of each code block (in function blocks, control modules and
programs),

* at backward jumps in the code (that is, loops such as For, While and Repeat
statements).

The main issue concerning task switching is data consistency. It must be assured
that the data required in a function block, do not change during function block
execution. Such a problem may arise if In_out parameters are used and the data
referred to the In_out parameter are also manipulated by another task. This problem
does not occur for In and Out parameters, since they make use of local copies within
the function block, which remain unchanged during the execution of the whole
function block.

It is important to allow scheduling points, bearing data consistency in mind, at a
sufficient number of points in the application code, otherwise tasks with higher
priority will be delayed by a low priority task leading to what is called task latency.
Another related problem concerns the ability of the controller to handle a power
failure. If a power failure occurs, the controller must go into a safe state and
maintain this safe state until the power supply is re-established. To do this, the
controller must thus be able to reach a scheduling point within a certain limited time
(a few milliseconds).

Conclusions

It is important to bear in mind that scheduling points at inappropriate places in the
code can give rise to data inconsistency (especially when using In_out parameters).

A sufficient number of scheduling points should be included in the code so as not to
cause task latency.

The frequency of scheduling points should be such that one can be reached within a
few milliseconds to allow the controller to reach a safe state in the event of a power
failure

82

3BSE044222R101

Section 3 Programming in Practice Function Block Execution

In practise, this means that you should avoid writing long code blocks and avoid
data access from several code blocks which may involve changes in data.

ﬂYou can read more about fasks in the Basic Control Software manual.

Function Blocks in ST and IL

In the Structured Text (ST) and Instruction List (IL) languages, function blocks are
called explicitly and parameter connections are expressed in the call. The same
function block can be called several times in the same code block and it will then be
executed several times during the same scan.

Function Blocks in FBD and LD

In the Function Block Diagram (FBD) and Ladder Diagram (LD) languages,
function blocks are called implicitly from the graphical block representation.
Parameter connections are expressed by graphical connections. The execution order
of the function blocks is from left to right, from top to bottom in the FBD language.
A function block can only have one block representation in a diagram and can thus
only be called once in an FBD code block.

Enable and Disable Inputs

In the FBD and LD languages it is possible to Enable/Disable the execution of a
function block with the EN input of the block (in LD this input is always connected
to the rung but in FBD it is an optional input that can be connected as any other
input).

When a function block is disabled (that is, EN = False), parameter copying cannot
be performed and no internal code in the function block can be executed. This
means that you can gain speed by using the EN input, instead of having an internal
Enable/Disable If-statement inside the function block controlled by a parameter.

3BSE044222R101 83

Function Block Code Sorting Section 3 Programming in Practice

The EN functionality is only available in FBD and LD, but it can be compared to a
similar construction in ST, see below.

If EN then
MyFB(Inl := Indatal,
Outl => Outdata2) ;
end_if;

The EN functionality of a function block is similar to the function of the ST code
above.

Function Block Code Sorting

As already mentioned, the code for the control modules is sorted for optimal data
flow during execution, see Correcting Sorting Problems on page 114. However, the
code inside the function block is not sorted. The function block as a unit is sorted
according to data flow. At this stage, it is important to note that:

* theread/write status of parameters in the function block plays an important role
in the code sorting routine,

» for any function blocks called from control modules, only the parameter
interface (IN, OUT, or IN_OUT) affects code block sorting.

That is, no analysis is made of how the function blocks actually use parameters. In
addition, function block references to external variables do not affect the execution
order of control module code blocks.

The table below shows the parameters that affect the code block sorting.

Table 5. Parameters that affect code block sorting.

Parameter Status in the function block
IN read
ouT write

IN_OUT read/write

Compilation does not involve analyzing the code inside the function
block to more thoroughly determine whether the parameter is of read
or write status.

84

3BSE044222R101

Section 3 Programming in Practice Control Modules in Function Blocks

Hence, it is important to note that IN_OUT parameters may result in a code block
loop error, since the analysis cannot determine if the parameter has write or read
status. For further information, see Correcting Sorting Problems on page 114.

Control Modules in Function Blocks

Function blocks may contain control modules. For a discussion of when this is
suitable, see Using Programs on page 20.

When control modules are created in function blocks, an explicit call to the
ExecuteControlModules system function must be made, to execute all the control
modules in such function blocks. The function can be called at any point in the code
in any of the function block code blocks.

Control Module Groups

All control modules in the function block form a group of control modules. All
direct sub control modules in the function block will be added to the group. Also all
sub control modules to the direct sub control modules will be part of this group.

The rule is that the call cannot be done if the function block has an empty local
group of control modules.

The group is considered empty if all control modules are either of the following.

* asynchronous (a sub control module has a task connection other than its
parent's task connection)

* without code
* only contain start code
Compile errors are generated if the rule does not apply.

It is possible to make several calls to ExecuteControlModules from the function
block code. At each call, all control modules in the group are executed.

Static Function Block in_out Parameter

If a control module parameter is connected to a function block in_out parameter, the
function block in_out parameter must be static in all calls. This means that if the
function block is called more than once (in a scan), it must have the same actual

3BSE044222R101 85

Control Modules in Function Blocks Section 3 Programming in Practice

variable connected to the in_out parameter in all calls. It also means that at least one
call to the function block must be done.

If the function block in_out parameter is connected to a parent function block in_out
parameter, this parent in_out parameter must also be static in all calls.

Examples of Control Modules in Function Blocks

The following two examples of control modules located in function blocks show
how co-sorted groups are formed.

+-[] Libraries
= Applications
= Application_1 1.0-0 - {ZContraller _1 Mormal)
+-[F] Connected Libraries
@ Data Types
+ -3 Function Black Types
+-4ZE Control Module Types
=-4FE Control Modules
—-FFE M1 Application_1.CMTypel - iContraller_1,Slow)
gFE subCM1 Application_1,SubCMType
gFE subCMz Application_1,SubCMType
Pk cMz Application_1.CMTypeZ - (Controller_1,Slow)

=] i Programs
=-3EF Program? - {Controller_1.Normal)
=EEJFE] FEType

= ﬁ CMinFE1 Application_1.CMTyped
IFE SubCMInFE1 Application_1.5ubCMType
FFE SubCMinFEZ Application_1.5ubCMType
ﬂ CMinFB2 Application_1.CMTvped
#- [Contrallers

Figure 36. Control modules in function blocks example.

In the figure above, in Program?2, the FB1 function block contains a group of control
modules. This local group contains the CMinFB1 control module with its
SubCMinFB1 and SubCMinFB2 sub control modules and the CMinFB2 control
module. All execute when the ExecuteControlModules function is called from the
FB1 function block.

In this group of control modules, the execution order of all code blocks is
determined by the code sorting.

86 3BSE044222R101

Section 3 Programming in Practice Control Modules in Function Blocks

As a comparison in the figure above, CM1, SubCM1, SubCM2 and CM2 form a co-
sorted group of control module code blocks executing in the Slow task.
+-[] Libraries
= Applications
= Application_1 1.0-0 - {Controller_1.Mormal)
+-[F] Conmected Libraries
& Daka Types
IJ Function Block Types
g2k Control Module Types
FFE ontrol Modules
—-JFE CM1 Application_1.CMTypel - (Controller_1,Slow)
gFE Subct1 Application_1.SubCMType
gFE SubcMz Application_1.SubCMType
IFE cMz application_1.CMType? - (Controller_1 . Slow)
Programs
= Program? - {Conkroller_1.Mormal)
-- 5 FB1 FEType
= @ CMinFE1 Application_1.CMType3
gFE SubCMinFEL Application_1.SubCMType
FFE SubCMinFEZ Application_1.SubCMType
CMinFBZ Application_1.CMTyped - (Contraller_1.Slow)

¥

¥

i

+-] Contrallers

Figure 37. Example of task connection to a sub control module.

It is also possible to make a task connection to a sub control module other than its
parent's task connection. In Figure 37 above, CMinFB2 in FB1 has such a task
connection and is therefore removed from the local group in FB1. The CMinFB2
control module is instead added to the group of co-sorted control modules in the
Slow task.

3BSE044222R101 87

Continuous and Event-Driven Execution of Function Blocks Section 3 Programming in Practice

Continuous and Event-Driven Execution of Function Blocks

®

The following subsection explains the differences between continuous and event-
driven execution of function blocks and how to use function blocks when using one

or the other method.

Function block types with parameters listed in Table 6 are intended for
continuous execution. They should be executed once per scan.

Table 7 shows parameters for event-driven execution.

Do not call function blocks of these types in an If or Case statement, or in an SFC
step, since this might cause errors in the state machine that is included in the
function block. Use the Enable and Request parameters to control how they are

executed.

Continuous Execution

The table below lists the general parameters used in continuously executed function
blocks. Note that all parameters do not have to be connected.

If an error and a warning take place at the same time, the error has precedence over
the warning and Status is set to the error code. Error and Warning are only activated
upon the call of the function block.

The duration of the Error and Warning parameters is a pulse during one scan
only. Therefore latching in the application is required to detect these signals.

Table 6. Parameters used for continuous execution of a function block.

Parameter . . -
Name Data Type Direction Description

Enable bool In Activates/deactivates continuous
functionality

Valid bool Out Indicates that there is no error and that
the function is active. Warning status
does not affect Valid

Enabled bool Out Indicates that the function is active. Is
not affected by error status or warnings
status.

88

3BSE044222R101

Section 3 Programming in Practice

Continuous and Event-Driven Execution of Function Blocks

Table 6. Parameters used for continuous execution of a function block. (Continued)

Pa;laanr:‘eeter Data Type Direction Description
Error bool Out Indicates an error (Status < 0)
Warning bool Out Indicates a warning (Status > 1)
Status dint Out Indicates Status code

A function block can be activated and deactivated using the Enable parameter.
Figure 38 shows an example of the parameter interaction in this case.

If a function block is invoked exactly once every scan, the distance in time

between two invocations is the interval time of the task.

Valid

Error

Warning

FB I

Status ===

AA
Vi

invokations '

Figure 38. Enable always true.

Some function blocks have a direct response on an activation/deactivation. The

response is basically, the same as that to “Enable Always True”, with the exception
that at deactivation, the parameter Status is reset to 1. The figure shows an example

of the parameter interaction in this case.

3BSE044222R1

01

89

Continuous and Event-Driven Execution of Function Blocks Section 3 Programming in Practice

This is for functions that can be started and stopped directly. The Enable parameter
is used to activate/deactivate the function block.

Enable

Valid

Error

Warning

Status =1 =1 < =1
p y » 0 3

FB I
invokations '

Figure 39. Direct response on activation/deactivation.

Some function blocks have a delayed response on activation/deactivation. This
means that the function block is started/stopped with a delay when the Enable
parameter is activated/deactivated. In order to “read” whether or not the function
block has been activated a parameter called Enabled is used. The figure shows an
example of the parameter interaction in this case. Note that the warning is active
during two calls before it disappears.

90 3BSE044222R101

Section 3 Programming in Practice

Continuous and Event-Driven Execution of Function Blocks

The function is started/stopped with delay when the Enable parameter is
activated/deactivated. To be able to read this an Enabled parameter can be used.

Enable

Enabled

Valid

Error

Warning

Status

FB
invokations

<

Figure 40. Delayed response on activation/deactivation.

Event-Executed Function Block Types (Standard Libraries)

The hand-shaking signals that are required when the functionality is (event-driven)
asynchronous and performed by commands, for example, values that are read from
another controller, are described by the parameters below.

V

signals.

The duration of the Error, Warning and Done or Ndr parameters is a pulse during
one scan only. Therefore latching in the application is required to detect these

3BSE044222R101

91

Continuous and Event-Driven Execution of Function Blocks Section 3 Programming in Practice

Table 7. Parameters used for event-driven execution of a function block.

Parameter

Name Data Type Direction Description

Req or bool In Activates the function block on a positive
Request edge. Must be reset by the user.

When the Req parameter is set for the
first time, it is advisable to wait until the
execution of the operation is completed.
That is, wait for the result derived via the
Done (Ndr) parameter or alternatively
the Error parameter before triggering
again. The Status parameter can be
used for this validation instead of the
above mentioned parameters.

A “pending operation” is indicated by
setting the Status parameter to “0”.

An important example of this usage is
when communicating in a multi drop
configuration where it is important to
achieve a distributed access to the
slaves. That is, do not ever trigger them
in a stochastic way without using the
handshaking.

Done or Ndr | bool Out Indicates that a command has been
(New Data executed but there were errors.
Received)

Error bool Out Indicates that a command has been
executed but there were errors.

Status dint Out Status code

Warning bool Out Optional parameter. Indicates that the
command has been executed and that
there were no errors, but a warning.

92 3BSE044222R101

Section 3 Programming in Practice Self-Defined Types

Examples of Function Blocks with Event-Driven Functionality

Request]

Dane

Error

WWarning

Status 4= na——= S 00 2,

Figure 41. Examples of event-driven execution.

Figure 41 shows examples of event-driven execution. Parameters are used according
to Table 7. The output signal Done only lasts for one call, whereas Status is stable
until next change. Figure 41 shows an example of the parameter interaction in this
case.

Self-Defined Types

This section gives some good advice on increasing the performance of your own
function block types and control module types. The advice concerns solutions
where an efficient application code is the primary goal. Other advice would be given
if readability of the application code was of more interest.

It is important to apply foresight when creating your own function block or control
module types. The choice of suitable types saves memory and reduces execution
time, which means increased control system performance. Saving 1 kilobyte of
memory in a type may mean that megabytes of memory will be saved in the whole
application.

ﬂ Examples showing how to create your own function block types and control
modules are given in the Basic Control Software manual.

3BSE044222R101 93

Self-Defined Types Section 3 Programming in Practice

It is recommended that you create your own libraries when working on a large
project, as this will give the project a better structure. Another major advantage of
creating your own libraries is that it is possible to re-use data types, function block
types, and control module types in other projects. You can create online help for
own your libraries, see the Extended Control Software manual.

Each library has to be connected to the application where objects from the library
are used. See the Basic Control Software manual.

Function Blocks and Control Modules in General

Basically, a function block or control module is a POU which consists of
parameters, variables and code. Both the function block and the control module are
based on the objectl type design, which means that they are described by their types.
From the object types, you create copies that behave exactly as the type.

Each copy (object) has its own memory representation of variables and parameters,
and when an object is called, it is the object that is called, not the underlying type.
The executable code, however, is shared between all objects and belongs to the
object type. To reduce memory usage it is therefore a good idea to try to have object
types that can be used as a source for several objects. If different behavior is
required for an object, this can be expressed by type parameters, see Flexible Types
on page 96.

When you create your own, self-defined, types, consider the following:
e Language Selection

In order to get optimal performance when programming IEC 61131-3 code, do
not choose a programming language that generates intermediate variables.

* Code Arrangement

Considering that types are instantiated, it may be better to accept a less well-
arranged code, in order to achieve increased type performance. Comments in
source code (comments are not included in the compiled code), may
compensate for the reduced clarity of the code.

1. In this section we write function block or control module as object.

94

3BSE044222R101

Section 3 Programming in Practice

Self-Defined Types

Code Tab Start

Note that code tabs starting with Start_ in control modules, are only executed
once, after each warm restart, before all other code. This is a feature that
reduces code size and memory consumption.

Overhead Time

Each code tab requires an extra overhead time in control modules. No
application execution will take place during this overhead time. The overhead
time will be 4—5 microseconds in a PM860 CPU, so use a minimum of code
tabs in a control module. For example, removing five code tabs in a function
block type with 1000 function blocks based on that type, will save 25 ms of
execution time.

Simple Function Blocks

Avoid the use of simple function blocks such as SR and R_Trig. Write the
equivalent code instead. The overhead time for simple function blocks will be
long due to parameter copying. For the same reason, avoid creating simple
types of your own.

Use timer functions instead of timer function blocks in your type. This will
save memory and reduce the execution time.

Project Constants

Do not use variables intended to be literals in a type, even if they have the
attribute constant. Use project constants instead.

Project constants are easy to change in a single place, the same value is always
used in the whole control project, and they facilitate easier use of logical
names, instead of values. Objects access project constants by pointers. They
can be located in your library, thus they are easy to find and modify.

Project constants may be defined in two locations: in the project or in a library.
Project constants to be used in types should be defined in the library where the
type is defined.

More information about project constants can be found in the Basic Control
Software manual.

3BSE044222R101

95

Self-Defined Types Section 3 Programming in Practice

o Unused Variables and Parameters

Variables and parameters require memory space, irrespective of whether they
are used or not. When the type has been created, clean up, and delete all
variables and parameters that are not used.

o HSI Communication

You should take into consideration any possible communication with HSI
(operator stations, etc.), when creating a type. Consider which variables are
required for communication, and which name convention is to be used.
Variables that do not have to be visible in the HSI should have the attribute
Hidden.

e Alarm and Event Objects

Generally speaking, you only have to use a single SimpleEventDetector
function block in a type. The function of SimpleEventDetector is like that of a
printer, logging an event according to its parameter values when the condition
is changed. Using a single event detector and then changing its parameter
values for different purposes will save a considerable amount of memory.

Control Module Interaction Windows in Function Blocks

The concept of placing an interaction window inside a control module can also be
extended to function blocks. Any function block type can be equipped with, for
example, an interaction window for testing or maintenance purposes. After the
interaction window has been designed, right-click the function block type in
question and choose New Control Module.... Select the library and the name of the
control module type.

There can be only one control module in the function block, and during online
mode, the control module is displayed by right-clicking the function block and
selecting Interaction Window.

Flexible Types

A flexible (adaptable) function block or control module type can be used for
creating several objects (that is, copies of a type), without having to make too many
variants of them. This can be done by creating parameters (for the flexible type) for

96

3BSE044222R101

Section 3 Programming in Practice Structured Data Type Examples

the control of certain behavior of the type. The parameters should be set up
(initiated) during the application start procedure.

To distinguish such parameters from other parameters, it is recommended that the
phrase Init be included at the end of the parameter name. You can see an example of
this by examining the library control module PidCC, where the parameters
SpExternallnit, SpManValuelnit, etc., have the suffix Init.

* Programming Example with Flexible Types:

Suppose we have created a control module type named MyPIDLoop. It consists
of an AnaloginCC, a PidCC, and an AnalogOutCC. The purpose of the type is
to generate a general PID loop, which can be used for several purposes (to
regulate temperature, level, pressure, etc.).

Most parameters of the included objects must be connected to parameters of
the new type, in order to make the type general.

We also want to be able to set the gain for each PID object during the
engineering phase (not during runtime). We must then declare a parameter
called Gainlnit [real]. The following piece of code in the new type sets the PID
gain for each object after the first download:

(* The variable 'init' is of type bool, has the initial wvalue
false, and has the attribute ColdRetain set *)
If Not Init Then

Init := True;
PidCC_InteractionPar.Main.Gain := GainInit;
end_if;

Structured Data Type Examples

You can connect application variables directly to the I/O, which is the easiest
method. The drawback of this strategy is that it might not be possible to read the I/O
signals from other parts of the program, and also not from other applications, in
other controllers. It will also be more difficult to identify signals belonging to a
certain process object.

It is better to group your I/O signals in structured data types, or even use a single
structured 1/O variable for communication between the application and the
controller.

3BSE044222R101 97

Structured Data Type Examples

Section 3 Programming in Practice

This subsection contains two examples of how to use structured data types to create
flexible automation solutions:

The Valve Configuration Example on page 99 shows how to set up I/O
communication using structured data types when configuring a valve.

The Structured Data Types in Structured Data Types — an Example on page 101
shows how to create a structured data type within a structured data type.

98

3BSE044222R101

Section 3 Programming in Practice

Structured Data Type Examples

Valve Configuration Example

This example intends to show how to use structured data types when configuring a
valve. To start with, the Table 8 asks some fundamental questions that you might ask

yourself before programming.

Table 8. Questions to ask before deciding on what data types to use.

Question

Answer

What type of valve object do | need and
what additional functions/modules do |
need to achieve this?

A control module with activate and two
feedbacks.

How shall the valve be configured?

Both in online and offline mode, that is,
from an interaction window (during
engineering) and/or from a faceplate
(Operators workplace). Also during
offline: in programming mode, set a
value on a connection that sets a default
(opened/closed) value for the valve in
the editor.

What kind of interfaces do we need?

Four kinds of interfaces (HSI, 10,
Configuration and Application).

How shall the object operate, that is,
shall it operate independently, or be an
integrated part of a larger object type,
for example a tank line?

Our valve must be able to operate both
independently, as an object type, and as
an object.

What kind of property permissions do
we need?

HSI and Configure Variables are the
only ones that need to be exposed via
the OPC server. Thus, these variables
need property permission settings and,
eventually, security definition settings as
aspect objects.

Does the valve need alarm handling,
and if so, which object level shall contain
the alarm owner?

In our case we will make the valve
template the alarm owner (highest
level).

3BSE044222R101

99

Structured Data Type Examples Section 3 Programming in Practice

In Figure 42, one data type is used to send data to the application (POType) and
another data type is used to send data to the IO (IOType). Read steps 1 — 5 below

Figure 42.
i Product tank: T1 1,2
(T Na—
J o ‘ tate P()T)rpu.\l’ 1D Typa. V100
3l f r lvmﬁ".——z——‘
|| 2 GE>—
X s
& >/

Figure 42. Using structured Data Types to communicate between 10 and the
application.

1. The Application code (IEC 61131-3) is connected to the valve module via the
PO Data Type, forming a star connection.

2. The software creates an automatic OR function.

3. Each individual function (Fill, Clean, Empty etc) that activates the valve object
can be written as if it was the only function using the valve. This makes the
design easier, and improves the re-usability of the software.

4. The IO data type is the connection between the valve and the IO module.

5. If the type of 1O connection should change from, for example, local 1O to
fieldbus, you only need to change the object. You do not have to make any
changes in your application module (see item 3), since it has already been
tested and validated!

When we know what kind of object we are going to build, and how it should be
configured, we need to decide on what interfaces the valve needs. We could be
content with a single interface for all IO, HSI, configuration etc., but it would not be
a very good design.

Earlier on, we identified at least four separate interfaces (HSI, IO, Configuration
and Application). These interfaces can in turn be divided or translated into data

types.

100 3BSE044222R101

Section 3 Programming in Practice Structured Data Type Examples

My Valve can be put in the center of a design map, surrounded by interfaces that are
linked to the valve.

2. Application

~— MyValve /

>

1. 10+— ™= 4.HsI

3. Configuring

Figure 43. Interfaces linked to a valve object.

The four interfaces 10, Application, Configuration and HSI can then each use a
structured data type to communicate with HSI, 10 etc.

Structured Data Types in Structured Data Types — an Example

This example shows how to create a structured data type inside another structured
data type. This makes it possible to group signals according to which part of the
process they belong to.

The example starts with a one-way valve for acid liquids. The valve has a total of
four signals: OrderOpen, OrderClose, AnswerOpen, and AnswerClosed.

The valve is programmed as a type in a library, and the name of the valve type is
ValveOnewayAcidType. One of the parameters of this valve is the I/O parameter of
structured data type, I0_ValveOnewayAcidType. It consists of four components.

Mame Data Type |Attributes |Initial “alue |Description ﬂ
1 |OrderOpen BoollO retain
2 |OrderClose |BoollD retain
3 |AnswerOpen |BoollO retain
4 |AnswerClosed |[BoollO retain - |
4|+ [Components KN Bl

| Row &, Col 1 [[
Figure 44. A structured data type.

The components are of the predefined structured data type BoollO. Further, each
component of the IO_ValveOnewayAcidType will be connected to an I/O channel of
the digital I/O modules.

Another valve in our process is a single actuator, one-way valve for non-acid
liquids. It is programmed as ValveOnewayType and has an I/O parameter of
10_ValveOnewayType with the following components.

3BSE044222R101 101

Code Sorting

Section 3 Programming in Practice

Marme Data Type |Attributes |Initial “alue |Description ﬂ
1 |OrderOpen |BoollO retain
2 |AnswerOpen |BoollD |retain - |
4 [» [% Components] 3|
[Row 4, Cal 1 [oM [

Figure 45. Programmed as ValveOnewayType

There is a process cell called “Mixing”, which mixes acid and water, where there are
two valves of ValveOnewayAcidType type, and one of the type ValveOnewayType.
The /O signals for these valves are collected in one structured data type
10_MixingType.

Marme Data Type Attributes Initial %alu Descrﬂ
1 |InletAcid 10 WalveOneWa |retain
2 |Inletvater 10 ValveOneWa |retain
3 |Outlethlix 10 _WalveOneWa [retain - |
<[+ [\ Components KN =
Rowg colt [M| 4

Figure 46. /O signals collected in one structured data type, (I0_MixingType).

We have now grouped the signals from and to the process (from the point of view of
the control system) into different parts of the process. The degree to which signals
are grouped is up to you. The I/O data types should preferably be placed as variables
or global variables in the application editor, so that they can be read and written
from the application.

Code Sorting

For control modules, the compiler analyzes each code block separately, with respect
to which variables are read and written by each block. ST, IL, FBD, and LD — SFC
are treated somewhat differently, see remark below. The compiler then determines
the optimal execution order for the code block. A block that assigns a value to a
variable has to be executed before the block that reads the variable value.

102

3BSE044222R101

Section 3 Programming in Practice Code Sorting

Control Module 1 Control Module 2
P1
P1:=1; — | [V1:=3-P1;
R ——
Code_Block_11 Code_Block_21

Figure 47. The code block in control module 1 must be executed before the code
block in control module 2.

The technique for ordering the blocks is called code sorting, and means that the
optimal execution order will be based on data flow, instead of the program flow (as
is the case for function blocks). Code sorting guarantees that the code will be
executed in the correct order. Code sorting reduces time delays and results in a new
control module automatically being correctly placed in the process.

(In, Out, or In_out) affects the code block sorting. That is, no analysis is carried
out of the actual use of parameters within the function block. In addition,
function block references to external variables do not affect the execution order
of control module code blocks.

@ If a function block is called from a control module, only the parameter interface

ﬂ Code sorting has no effect on control modules connected to different tasks.

Within an SFC code block, only the N action parts (not PO or P actions) are
sorted.

ﬂ The execution order of function blocks follows the program flow, as implemented
by the programmer according to IEC 61131-3.

3BSE044222R101 103

Code Loops Section 3 Programming in Practice

Code Loops
If more than one control module code block uses the same variable for both reading
and writing, the compiler gives a warning message that a code loop has been found,
which means that the execution order cannot be resolved:

Control Module 1 Control Module 2
Request

Produce := 50; If Request >= 1 then
Request := Produce — Delivered; : Deliver := 1;
Delivered := Delivered + Deliver; b [end_if;

Code_Block_11 ‘D eliver Code_Block_21 |

Figure 48. Control module 2 reads Request and writes Deliver, and control
module 1 reads Deliver and writes Request. This execution order cannot be

resolved.

This case yields the following error information:

File Edit Search Help
LOOP BLOCK 1
MODULE aApplication_1.Control_Hodule_2? DEFINITION Control_Hodule 2
EQUATION Code_Block_21 (6)
READ Request => Application_1:Request (7)
WRITE Deliver => Application_1:Deliwver (7)
MODULE Application_1.Control_Hodule_1 DEFINITION Control_Hodule 1
EQUATION Code_Block_11 (7)
READ Delivered => Application_1:Deliver (6)
WRITE Request => Application_1:Request (6)

Cancel |

t:| | Continue I

Figure 49. An error message is generated, indicating a code loop problem.

download. Although, you cannot change compilation errors for code loops, you
can bypass the interruption for download by changing a compiler switch.
However, it still might lead to unexpected execution behavior. It is recommended
that you solve code loop problems when they occur.

@ Code loops will always generate an error during compilation and interrupt the

104 3BSE044222R101

Section 3 Programming in Practice Variable State

To bypass interruption for download

1. Right-click project and select Settings > Compiler switches from the context
menu.

2. Select Loops in Control Modules in the Switch list.
3. Change Error to Warning in the Global drop-down menu.
4. OK.

In the example (Figure 48), the Request value determines the Deliver value, which,
in turn, determines the Request value. This condition is shown in the automatically
generated text file, where the figures within parentheses refer to the code block each
parameter depends on. Provided that circular dependence actually exists (and is not
merely the result of a programming error), the problem can be solved by assigning a
State qualifier to the Delivered variable and introducing a new code block in control
module 1, Code_Block_12:

Control Module 1 Control Module 2
Produce := 50; Request If Request >= 1 then
Request := Produce — Delivered:old; _— Deliver :=1;
Code_Block_11 end_if;

de_Block_21
Delivered:new = Delivered:old + Deliver] | <— Code_Block 21]
Code_Block_12 Deliver

Figure 50. How to eliminate code loop dependencies.

The code loop dependency has now been eliminated; Delivered:old stores the value
from the previous scan and Delivered:new contains the updated value from the
current scan. Hence, the execution order becomes code blocks 11 — 21 — 12. This
approach is particularly valuable for complex applications, which are difficult to
monitor manually.

Variable State

State can only be specified for local variables of types bool, int, uint, dint, and real.
If, for some reason, you wish to override sorting and avoid the State implications,
you can assign the NoSort attribute to the variable.

3BSE044222R101 105

NoSort Attribute Section 3 Programming in Practice

NoSort Attribute

Incorrectly used, the NoSort attribute may cause execution errors and application
failure. NoSort should typically be used only when the code block connections
themselves unambiguously determine the execution order.

@ Use NoSort only if you know the data flow characteristics in detail.

106 3BSE044222R101

Section 3 Programming in Practice Interpret and Correct Code Loop Errors

Interpret and Correct Code Loop Errors

Code sorting means that Control Builder sorts the code blocks in control modules in
an execution order based on optimal data flow, determined by the system. Variables
are sorted so that they receive a value (Read in) before it is used by another variable
(Write out). However, if the system is unable to accomplish this in one scan, that is,
a variable value is passed on before it has been updated, a code loop has been
identified. The system will display an Error Log output that presents the actual
execution order, indicating one or several code loop occurrence(s).

This subsection will present analysis procedures for interpreting Error Log output
and give some advice on how to deal with code loops.

ﬂSee also Code Loops on page 104.

Error Log Output

A typical sorting error log output is shown in Figure 51.

LOOP BLOCK 1
CONTROL MODULHgMyApplication.Pumpl,Vl] DEFINITION
CODE BLOCK ValveCode.[@‘_{ ®

READ In => MyApplication.Pumpl:M1 Fwd (4)
WRITE Out => MyApplication.Pumpl:Vl Open (3)
CONTROL MODULE MyApplication.Pumpl.V2 DEFINITION Valve
CODE BLOCK ValwveCode (2)
READ In => MyApplication.Pumpl:M1_Fwd (4)
WRITE Out => MyApplication.Pumpl:V2_Open (3)
CONTROL MODULE MyApplication.Pumpl.M2 DEFINITION Motor
CODE BLOCK MotorCode (3)
READ 1In => MyApplication.Pumpl:V1l Open (1)
In2 => MyApplication.Pumpl:V2 Open (2}
WRITE Out => MyApplication.Pumpl:M2_Stop (4)
CONTROL MODULE MyApplication.Pumpl.M1 DEFINITION Motor
CODE BLOCK MotorCode (4)
READ In => MyApplication.Pumpl:M2_Stop (3)
WRITE Cut => MyApplication.Pumpl:M1 Fwd (1)
Cut => MyApplication.Pumpl:Ml_Fwd (2)

Loop Block (3

LOOP BLOCK 2
CONTROL MODULE MyApplication.Pump2.V1 DEFINITION Valve
CODE BLOCK ValveCode (5)
READ In =» MyApplication.Pump2:M1_Fwd (8)
WRITE Out => MyApplication.Pump2:V1l_Open (7)

Figure 51. A typical sorting error log output.

3BSE044222R101 107

Interpret and Correct Code Loop Errors Section 3 Programming in Practice

The five parts of the log labeled A — E, in the figure are explained below.

* A: Code loop block identifier/delimiter
Each code sorting error results in a block, numbered 1, 2, ...

* B: Control module name
The name of the control module in question.

* C: Control module type
The name of the control module type in question (see B above).

e D: Code block name
The name of the code block in question.

* E: Code block identifier
The number given by the compiler to the code block.

Code Loop Block

As can be seen, the error log output is a structured list, where the top level is
represented by code loop blocks, numbered 1, 2, 3, etc. Each code loop block
corresponds to a code sorting error. If you correct the code for the error in code loop
block 1, it disappears when you re-compile the code, and code loop block 2 will take
its place, and all code loop blocks will be renumbered accordingly.

If there is a code sorting error within a type, you will receive a code loop block for
each control module that uses the type. This means that if you use a type in 600
control modules, for example, you will see 600 code loop blocks in the error log.
Correcting the error in the type will make all 600 code loop blocks disappear in the
next run. Hence, a long error log may not indicate many errors, it may be a single
error in a type that is used in many places.

Control Module Name and Control Module Type

Inside each code loop block you will find, on separate rows, the names of control
modules that are related to the error. In Figure 52, code loop block 1, we have four
control modules; MyApplication.Pumpl.V1, MyApplication.Pumpl.V2,
MyApplication.Pumpl.M2, and MyApplication.Pumpl.M1.

Following the control module name, the type is displayed, for example, Valve,
Valve, Motor, and Motor.

108

3BSE044222R101

Section 3 Programming in Practice Interpret and Correct Code Loop Errors

Code Block Name and Identifier

Within each control module section, the code block in which the error is contained
is given. Each code block within an application is given a unique number (identifier)
by the compiler.

Visualizing the Error Log Output

The next step is to visualize the error log output (in Figure 52). We will take code
loop block 1 as an example.

1.

Concentrate only on the code loop block in question. Code loop blocks are not
connected to each other, so if you correct the error(s) within a code loop block
this will not result in errors being automatically corrected in other code loop
blocks.

Note the CONTROL MODULE lines and the succeeding CODE BLOCK line.
For each code block line, draw a circle on a piece of paper and write “1, “2”,
etc, representing the code block identifiers.

@ @

® @

Figure 52. The four code block representatives in the Loop Block 1.

3.

Return to the first control module in the code loop block and proceed to the
CODE BLOCK section. Inspect the lines below the code block line (1). (Do
not continue reading into the next CONTROL MODULE section.)

At the end of the first line we note that the variable M/1_Fwd is read from “4”.
Draw an arrow from “4” to “1” (it is read from “4” by “1”). Label the arrow
“M1_Fwd”.

3BSE044222R101

109

Interpret and Correct Code Loop Errors Section 3 Programming in Practice

Continue to the next line. We note that the variable VI_Open is written to “3”.
Draw an arrow from “1” to “3” (it is written by “1” to “3”). Label the arrow
“V1_Open”.

Figure 53. Analyze of the Code Block 1 dependency.
We have now finished the analysis for code block 1.
4. Continue to the next code block, code block 2

At the end of the first line the variable M1 _Fwd is read from “4”. Draw an
arrow from “4” to “2” (it is read from “4” by “2”). Label the arrow “M1_Fwd”.

Continue to the next line. The variable V2_Open is written to “3”. Draw an
arrow from “2” to “3” (it is written by ‘“2” to “3”). Label the arrow “V2_Open”

Figure 54. Analyze of the Code Block 2 dependency.

We have now finished the analysis of code block 2.

110 3BSE044222R101

Section 3 Programming in Practice Interpret and Correct Code Loop Errors

5. Continue to the next code block, code block 3

At the end of the first line the variable VI_Open is read from “1”. Draw an
arrow from “1” to “3” (it is read from “3” by “1”). Now you find that this has
already been done. As you can see, there will be occasions when an operation
has already been analyzed.

Continue to the next line. Here we have a similar situation, “3” reads “2”. This
has already been dealt with (“2” writes to “3”). Go to the next line.

The last line says: “3” writes to “4” using variable M2_Stop. Draw an arrow
from “3” to “4” and label it “M2_Stop”.

Figure 55. Analyze of the Code Block 3 dependency.
We have now finished the analysis of code block 3.

Proceed in this way with the remaining code block 4. You will find that the
flows and arrows have already been dealt with above. When finished, you
should have a diagram like that in Figure 56.

3BSE044222R101 111

Interpret and Correct Code Loop Errors Section 3 Programming in Practice

6. You may want to rotate the drawing to get a clearer picture of the flow, as
shown below

Figure 56. The Loop Block 1 visualized from the Error Log output.

The analysis shows that the code contains two loops, and that the variable M2_Stop
is part of both loops. Therefore, programming adjustments should, in this case, be
concentrated to the variable M2_stop. These are the facts, we can either accept that
code block 4 reads M2_Stop with a delay of one scan, or start over and re-design the
code. See Correcting Sorting Problems on page 114.

When you have a more trained eye you will be able to identify the flows in the error
log more quickly. Think as follows.

e Concentrate on one code loop block at a time.

* Reduce the control module lines by deleting the “CONTROL MODULE”

lines.
CODE BLOCK ValveCode (1)
READ In => MyApplication.Pumpl:M1_Fwd (4)
WRITE Out => MyApplication.Pumpl:V1l_Open (3)
CODE BLOCK ValveCode (2)
READ In => MyApplication.Pumpl:M1_Fwd (4)
WRITE Out => MyApplication.Pumpl:V2_Open (3)
CODE BLOCK MotorCode (3)
READ In => MyApplication.Pumpl:V1l_Open (1)
In2 => MyApplication.Pumpl:V2_Open (2)
WRITE Out => MyApplication.Pumpl:M2_Stop (4)
CODE BLOCK MotorCode (4)
READ In => MyApplication.Pumpl:M2_Stop (3)
WRITE Out => MyApplication.Pumpl:M1_Fwd (1)

Out => MyApplication.Pumpl:M1_Fwd (2)

112

3BSE044222R101

Section 3 Programming in Practice Interpret and Correct Code Loop Errors

* Delete the code block name for simplicity.
CODE BLOCK (1)

READ In => MyApplication.Pumpl:M1_Fwd (4)
WRITE Out => MyApplication.Pumpl:V1l_Open (3)
CODE BLOCK (2)
READ In => MyApplication.Pumpl:M1_Fwd (4)
WRITE Out => MyApplication.Pumpl:V2_Open (3)
CODE BLOCK (3)
READ In => MyApplication.Pumpl:V1_Open (1)
In2 => MyApplication.Pumpl:V2_Open (2)
WRITE Out => MyApplication.Pumpl:M2_Stop (4)
CODE BLOCK (4)
READ In => MyApplication.Pumpl:M2_Stop (3)
WRITE Out => MyApplication.Pumpl:M1_Fwd (1)

Out => MyApplication.Pumpl:M1_Fwd (2)

* Replace “Read In =>" and the application name, up to the variable name by
“Read:”, change the places of the variable name and the identifier.
CODE BLOCK (1)

READ (4) M1_Fwd

WRITE Out => MyApplication.Pumpl:V1l_Open (3)
CODE BLOCK (2)

READ (4) M1_Fwd

WRITE Out => MyApplication.Pumpl:V2_Open (3)
CODE BLOCK (3)

Read: (1) V1_Open

(2) V2_Open

WRITE Out => MyApplication.Pumpl:M2_Stop (4)
CODE BLOCK (4)

Read: (3) M2_Stop

WRITE Out => MyApplication.Pumpl:M1_Fwd (1)

Out => MyApplication.Pumpl:M1_Fwd (2)

3BSE044222R101 113

Interpret and Correct Code Loop Errors Section 3 Programming in Practice

* Replace “Write Out =>" and the application name, up to the variable name with
“Write:”, change the places of the variable name and the identifier.
CODE BLOCK (1)
READ (4) M1_frwd
WRITE (3) V1_Open

CODE BLOCK (2)
READ (4) M1_Fwd
WRITE (3) V2_Open

CODE BLOCK (3)
Read: (1) V1_Open
(2) V2_Open
Write: (4) M2_Stop

CODE BLOCK (4)
Read: (3) M2_Stop
Write (1) M1 _Fwd
(2) M1_Fwd

* The flow has now been greatly simplified, and is easier to read. Code Block 3
write out the value from variable M2_Stop, before the value has been read in
(see Code Block 4), thus one scan delay.

Correcting Sorting Problems

You should always design your type solutions (motors, valves etc.), so that the user
of the objects never has to correct sorting problems caused by your types. A control
module type normally requires at least three code blocks: one that receives signals
from the outside, another that performs the actual control and handles any state
machines, and a third that transfers signals to the outside.

There are a number of ways of correcting a sorting problem. The solutions below
represent an ascending scale of responsibility for the programmer. Complex code
loops may require combinations of these methods, in order to solve problems
efficiently.

114 3BSE044222R101

Section 3 Programming in Practice

Interpret and Correct Code Loop Errors

Change code blocks contents.

This is the best way to correct a sorting problem. The compiler determines the
execution order of the code blocks in each control module. It is sometimes
possible to correct a code loop simply by splitting, or merging, code blocks.
Note that all “pages” in an FBD or LD code block belong to the same code
block.

a.

Split one or more of the affected code blocks into two or more code
blocks.

Merge two or more of the affected code blocks. Note that this is only
possible if they are in the same control module.

Instruct the compiler what action should be taken when a sorting problem
arises. This is necessary if it is not possible to solve the code loop.

a.

Use the “State” attribute on the variable/variables that form the code loop.

Use “:New” when you want the value from the current scan, and *“:01d”
when you want the value from the previous scan. Use “:0ld” in the code
block that is the least affected by data one scan old.

This alternative is used when the programmer wants to decide the sorting
order. Note, however, that not all data types have the “State” attribute;
only simple data types, excluding the string type.

The State attribute can only be specified for local variables of type bool, int, uint,
dint, and real. If you, for some reason, want to override sorting and thereby avoid
the State implications, you can assign the NoSort attribute to the variable.

3.

®

Use “NoSort” attribute on the variable/variables that form the code loop.

This alternative is used when it is not important which code block is executed
first. In this case, the programmer take full responsibility and allows the
compiler to randomly choose one code block before the other.

Incorrectly used, the NoSort attribute may cause execution errors and application
failure. Use NoSort only if you know the data flow characteristics in detail.

Code Blocks in SFC

Code loops in code blocks called by N actions are often confusing to people who are
new to control modules. Pieces of code placed in N action steps can never be in

3BSE044222R101

115

Code Optimization

Section 3 Programming in Practice

conflict with each other, since this is prevented by the transitions involved.
However, the compiler does not consider that, but sorts the N actions just like other
code blocks, thus indicating code loops. If possible; to bypass these loop-warning
messages, move the affected code from N actions to the outer action steps P1 or PO.

Code Optimization

Code optimization involves many different activities and can be seen from a number
of angles. This section does not aim to tell you all about code optimization, it merely
intends to provide you with hints and good advice within a number of important
fields:

Basic Rules and Guidelines Regarding Tasks and Execution on page 116 gives
you some basic rules and guidelines regarding tasks and execution.

Function Block, Operation, and Function Calls on page 117 discusses the best
way to call function blocks and functions, and gives some tips on how to
improve communication with the operator interface.

Excessive Conditional Statements on page 120 shows you how to reduce the
number of conditional statements (these consume a lot of time and memory).

16- or 32-Bit Data Variables on page 121 discusses in which cases it is
advisable to use 16-bit and 32-bit variables, respectively.

Variables and Parameters on page 121 contains recommendations and advice
regarding string handling, data types, and the use of retain and cold retain
attributes.

Code Optimization Example on page 122 contains an alarm and event handling
code optimization example.

Basic Rules and Guidelines Regarding Tasks and Execution

There are some basic rules and guidelines regarding tasks and execution:

A maximum of 70% of the system capacity can be used for the execution of
application code.

Code should not be executed more often than necessary. Example: A regulator
for pressure normally needs to be executed several times faster than a regulator

116

3BSE044222R101

Section 3 Programming in Practice Function Block, Operation, and Function Calls

for temperature (since pressure changes more rapidly than temperature). Code
that takes 25 ms to execute and is executed every 100 ms (interval time) loads
the system with 25% (load = execution time / interval time). If the same code is
run every 500 ms, the load decreases to 5%. Pieces of code with different
execution frequency are best connected to separate tasks.

Code should not be written in such a way that it takes an unnecessarily long
time to execute. On the other hand, code should not be written in a cryptic way,
just to speed up execution time. The code must be clear, so that anyone can
understand it.

Task interval times should be multiples of each other.

Recommendations

Code items that are closely connected or exchange large amount of data with
each other should be connected to the same task.

There should be no more than 5 tasks in each controller. The controller can
handle more than 5 tasks, but experience shows that most users find it difficult
to maintain an overview if there are too many tasks.

Execution of code should not load the system by more than 55-65%.

Function Block, Operation, and Function Calls

String Function Calls

String handling is especially demanding for the CPU. By minimizing the number of
string operations, significant savings in CPU capacity can be made. Especially
string concatenations increase CPU load, and should be avoided, if possible.

Reducing String Execution Time

In some cases, string values can be sent to HSI system software, and concatenations
etc. can be performed in the workstation instead. Producing a report using string
concatenations and a function block for printing to a local printer (for example
PrintLines) is a heavy task for the CPU. The report can instead be produced in the
HSI system.

3BSE044222R101

117

Function Block, Operation, and Function Calls Section 3 Programming in Practice

In some cases, strings are more or less static, that is, they are never or seldom
changed. In this case the code should be designed so that string operations are
performed only when it is absolutely necessary. The IP address, when using MMS
communication, is an example of this. Instead of passing the IP address to the
MMS Connect function block every cycle, it can be done in the first cycle of
execution only, by using start code blocks. Another alternative is to use project
constants for static strings, or to encapsulate the string procedure in a conditional
statement, so that it executes only on demand.

Using Start Code Blocks

As we have seen before, it is sometimes useful to prevent parts of the code from
executing every cycle. A typical example is the passing of static string values (for
example [P addresses) to function blocks. Another example is when strings are to be
concatenated to produce alarm messages, etc. Adding two strings, such as
“Tank_114" and “_High_Level”, increases CPU load considerably if the operation
is performed in each cycle. Since the string value in this case is not meant to be
changed during execution, it is much more efficient to execute the string operation
only once, when the code starts to execute.

When control modules are used, this is achieved by using Start Code blocks. By
naming the code block Start_name, the code inside the code block will only be
executed in the first cycle after a cold start, or a change in the code. The code inside
a start code block is only executed once after a download.

If the project consists of programs and function blocks instead, the function
FirstScanAfterApplicationStart can be used. This function only returns a true value
for the first cycle after downloading a change in the code, or after a cold start. This
function can be used in conditional statements, for example, to set the value of a
function block parameter:

If FirstScanAfterApplicationStart () then
MMSConnect_1.Partner := IPAddress_1;
end_if;

where IPAddress_1 is a string variable with the actual address as initial value.

118 3BSE044222R101

Section 3 Programming in Practice Firmware Functions for Arrays and Struct

Using Project Constants

Project constants are especially useful for passing constant values into function
blocks in different programs. The benefits are that the values are always the same
for all function blocks that use a particular constant.

One example of this is the time-out for an ACOF function block. Let us say that
there are ACOFs in ten different programs in your project. They should all have a
time-out setting of 3 s. Instead of declaring 10 variables with the initial value of 3 s
and the attribute constant, one project constant with this value can be created and
used for all ACOF function blocks.

Firmware Functions for Arrays and Struct
Firmware Functions for Arrays and Struct might be time consuming.

Carefully consider the impact on 61131-3 execution when using the firmware
functions for arrays and structs, if they contain string variables. Execution time can
go up to 100-150 pus per string in a PM864/865 (e.g., creating an array with 100
string components takes roughly 10 ms).

The 1131 scheduler is NOT executed during the function call, causing latency of the
same duration as the function execution time, even to higher-priority tasks!

Arrays and structs without strings are much less time-consuming, and should not
cause any problems for array/struct sizes <1000 elements. Creating an integer array
of maximum size (65535 elements) takes 25 ms.

3BSE044222R101 119

Excessive Conditional Statements Section 3 Programming in Practice

Excessive Conditional Statements

If you use conditional statements, care must be taken to avoid unnecessary
execution of code. Let us look at the following examples.

Example 1

If Reset then

Count := 0;

elsif Stop then
Count := Count;
elsif Start then
Count := Count +1;
end_if;

Example 2

If Reset then

Count := 0;
end_if;

If Stop then

Count := Count;
end_if;

If Start then
Count := Count +1;
end_if;

The code examples above have the same function, but the code in example 1 is
executed much faster than that in example 2.

In the first example only the first condition is evaluated as long as Reset is true. In
the second example all conditions must be evaluated in each cycle, even though the
three variables are mutually exclusive. If there is a large amount of code inside the
conditions, valuable CPU power will be wasted.

120 3BSE044222R101

Section 3 Programming in Practice 16- or 32-Bit Data Variables

16- or 32-Bit Data Variables

In many cases, the choice of data type for a variable or parameter is obvious, but
sometimes, making the wrong choice will actually lower the performance of the
CPU. In most cases, working with variables of data type int (16 bits) gives worse
performance than using dint (32 bits) as data type. The reason for this is that the
CPUs are designed for 32 bit operations. If 16-bit data are used, the CPU has to
transform these values to 32 bits before the operation can be made, and then back to
16 bits after the calculation has been completed.

Variables and Parameters

Strings
Below is some good advice when handling strings.

* The handling and copying of strings creates considerable CPU load. Variables
of type string require a great deal of memory, and the execution time is long
during copying and concatenation.

* Always use square brackets, [] around strings, to limit string variables or string
parameters.

* Copy strings every scan only when required. Remember that a connection to a
function block actually involves copying variables from one to the other, see
the Basic Control Software manual.

* Concatenation of strings should only be performed when absolutely necessary.

Variable Attributes

The attribute retain' should only be set for variables if they really require such an
attribute, as this attribute increases the stop time during download of program
changes to the controller.

1. All function block parameters are set to retain by default.

3BSE044222R101 121

Code Optimization Example Section 3 Programming in Practice

However, In parameters should normally have the attribute retain to obtain
bumpless transfer of signals, after a warm restart. Out parameters that are always
written (before reading) in each scan, do not require a refain attribute.

ﬂMore information on attributes can be found in the Basic Control Software manual.

Code Optimization Example

To facilitate readability, the following conventions are used in the examples below.

tb Function block
p Parameter

v Variable

c Project constant

The code below (before optimization) will generate an alarm, and an output will be
activated if the alarm value exceeds a preset value.

(* Comment placed here *)

fbSR(S1 := pLevel > pHighLevel,
Reset := pLevel < pNormalLevel,
Q1 => vSignal);

fbAlarmCond(Signal := vSignal,
SrcName := pName,
Message := pDescription + vTextSpace + vTextHighLevel,
Severity := pSeverity,
Class := pClass,
FilterTime := pFilterTime,
EnDetection := pEnDetection,
CondState => vCondState) ;

pAlarm := vCondState > 2;

The code below has been optimized for the best performance.

(* The variable vFirstScan is default true *)
if vFirstScan then

fbAlarmCond.SrcName := pName;
fbAlarmCond.Message := pDesciption + cTextSpace +
cTextHighLevel;

122

3BSE044222R101

Section 3 Programming in Practice Code Optimization Example

fbAlarmCond. Severity := pSeverity;
fbAlarmCond.Class := pClass;
fbAlarmCond.FilterTime := pFilterTime;
vFirstScan := False;

end_if;

if pLevel > pHighLevel then
fbAlarmCond.Signal := True;

elsif pLevel < pNormallLevel then
fbAlarmCond.Signal := False;

end_if;

fbAlarmCond(EnDetection := pEnDetection);

pAlarm := fbAlarmCond.CondState > 2;

The following modifications have been made in the optimized code example:
* The function block fbSR has been replaced by equivalent code.
* Local variables have been replaced by project constants.

* The alarm function block is called using connected static values during start-up
only.

* The alarm function block will be called continuously with its parameters,
which can be changed dynamically.

* Writing and reading the inputs and outputs of the alarm function block is
performed without using any intermediate variables.

3BSE044222R101 123

Task Tuning

Section 3 Programming in Practice

Task Tuning

To make all the tasks work together, without deterioration in performance, you may
have to tune task settings, such as offset. In the example below, we show a typical
situation and some actions that can be taken in order to tune task execution.

Example

Assume there are four tasks in a controller, see Table 9.

Table 9. Four tasks with interval and execution times.

Interval Time | Execution Time
Task
(ms) (ms)
A 50 10
B 150 20
C 300 30
D 600 20

Follow the steps below to tune these tasks for optimum performance.
1. Compile information

Gather information about existing tasks. Tasks that are defined, but not used,
should be deleted. Note the interval time and execution time of all remaining
tasks.

2. Analyze
Analyze the tasks regarding the interval time, that is, are they reasonable?

All interval times must be multiples of each other. A slower task should
preferably have an interval time that is n times the interval time of the closest
faster task. In this example, the interval times are optimal, B has 150 =3 x 50
(= A), Chas 300 =2 x 150 (= B), and D has 600 = 2 x 300 (= C)ms.

The smallest common denominator is 50 ms.

124

3BSE044222R101

Section 3 Programming in Practice Task Tuning

3. Draw a time diagram

Draw a time diagram of a complete cycle, in our case, 600 ms. Mark the 12
time slots (600/50 = 12).

Time
0 100 200 300 400 500 600
| A | | | | | |
" 1 1 | 1 I I
< B I I I I | |
< C 1 1 1 1 I I
| D 1 1 1 1 I I
1 2 3 4 5 6 7 8 9 10 11 12
Slots
4. Insert the tasks into the time diagram
a. Start by inserting the task (or tasks) that must be executed in every time
slot (in our case, task A).
Time
0 100 200 300 400 500 600
I
AP 2 H | | |
< B I I I I | I
< C I I I I ! I
| D I I I I I I
1 2 3 4 5 6 7 8 9 10 11 12
Slots
b. Continue with the second shortest interval time (in our case, task B). This
task should be executed in every third slot (interval time = 150 ms = 3
slots). Since the execution time for A + B = 10 + 20 ms < 50 ms we can
start in slot 1 and then use slots 4, 7, and 10.
Time
0 100 200 300 400 500 600
I
cA PP i i i i L
< B |O, O I O, . |
< C 1 1 | 1 I I
| D 1 1 1 1 I I
1 2 3 4 5 6 7 8 9 10 11 12
Slots
3BSE044222R101

125

Task Tuning

Section 3 Programming in Practice

Continue with the third shortest interval time (in our case, task C). This
task should be executed in every 6th slot (interval time = 300 ms = 6
slots). Since the execution time for A+ B + C =10 + 20 + 30 ms > 50 ms

we cannot start in slot 1. We start in slot 2, and then again after 6 slots, that
18, slot 8.

Time
300

100 200 400 500 600

of fiel
e

1 2

P P

O, O I
I 1] I I
I I | |

— Tasks —
o0 W >

6 7
Slots

8 9 10 M 12

Finally, consider the task with the longest interval time (in our case, task
D). This task should be executed in every 12th slot (interval time = 600 ms
=12 slots), that is, once every cycle. Task D could be started in slot 1 since
the execution time for the three tasks then would become 10 + 20 + 20 =
50 ms. But then the entire slot would be filled, which is not recommended.
Task D cannot be placed in slot 2 for the same reason. We choose slot 3.
Time
300

SR S
1 I I
I O I

200

400 500 600

=P P
A

9

— Tasks —
o0 W >

F

10 N 12

126

3BSE044222R101

Section 3 Programming in Practice Task Tuning

What should you do if a task cannot be placed in a time slot?
There are three ways of dealing with this problem.
1. Use the priority settings, to specify which task should be prioritized.

2. Divide a task into two tasks, with the same interval time, but with shorter
execution times.

3. Examine the possibility of increasing the interval time for the task that has the
shortest interval time. This will increase the width of the time slots.

The first alternative means longer execution time for task execution, thus other
functions are locked-out for a longer time, before they can be executed. Alternative
2 and 3 are the most suitable ones, since they use offset. With offset, a time gap is
maintained between task executions for other functions, for example
communication. However, to accomplish offset for tasks, you need to re-design the
entire time diagram.

Calculate Offset for Tasks

Calculate the appropriate offset for the tasks. Task A should be executed first in
every slot, so we set the offset for task A to 0 ms.

Task B will be executed together with task A in slots 1, 4, 7, and 10. Task A has the
execution time 10 ms, and task B 20 ms. In these slots there will be

50 — 10 — 20 = 20 ms of free execution time. This allows us to place these 20 ms in
equal parts on each side of task B, that is, set the offset for task B to 20 ms (the
execution time for task A + 10 ms).

The modified time diagram for task B is shown below.

Time
0 100 200 300 400 500 600

P : P H P H

A
C 11 | I (. I
D | |

— Tasks —

3BSE044222R101 127

Task Tuning

Section 3 Programming in Practice

Task C is modified in the same way as follows.

Free time in slot = slot time (50 ms) — execution time for task C (30 ms) — execution

time for task A (10 ms) = 10 ms. Divide this time to give a 5 ms interval on each
side of task C.

The offset for task C is then: 50 ms (slot time for slot 1) + 10 ms (task A) + interval
(5 ms) = 65 ms.

The modified time diagram for task C is shown below.

Time
0 100 200 300 400 500 600

PP PP P PP P PP

o I L1, -
[I

— Tasks —

4 5 6 7 8 9 10 N 12

Task D is also modified as follows.

Free time in slot = slot time (50 ms) — execution time for task D (20 ms) — execution

time for task A (10 ms) =20 ms. Divide by 2 to give 10 ms time intervals before and
after task D.

The offset for task D is then: 100 ms (slot time for slots 1+2) + 10 ms (task A) +
interval (10 ms) = 120 ms.

The modified time diagram for task D is shown below.

Time

0 100 200 300 400 500 600
|
. A p p p i i i
< B 1, - I 1, . |
S C 1 [1 1 1 I I
| D | ! | I I I

1 2 3 4 5 6 7 8 9 10 1 12

Slots

We have now tuned our tasks without having to use priorities. All the tasks in the
example above have the same priority. The only reason for using priorities is when
you can not find a slot to contain a task as mentioned above.

128

3BSE044222R101

Appendix A IEC 61131-3 Standard

Main Objectives

The main objectives of the IEC 61131-3 standard are as follows.

The standard encourages well-structured program development. All application
programs should be broken down into functional elements, referred to as
program organization units or POUs. A POU may contain functions, function
blocks or programs.

It should be possible to execute different parts of the application program at
different rates. This means that the system must support individual interval
times for different POUs.

Complex sequential behavior can easily be broken down into events using a
concise graphical language.

The system must support data structures so that associated data can be
transferred between different parts of a program as if they were a single entity.

The system should have parallel support for the five most used languages,
Ladder Diagram (LD), Instruction List (IL), Function Block Diagram (FBD),
Structured Text (ST) and Sequential Function Chart (SFC).

The programming syntax should be vendor independent, resulting in more or
less portable code that can easily be transferred between programmable
controllers from different vendors.

3BSE044222R101

129

Benefits Offered by the Standard Appendix A IEC 61131-3 Standard

Benefits Offered by the Standard

Well-structured Software

The main purpose of the IEC 61131-3 standard is to improve overall software
quality in industrial automation systems. The standard encourages the development
of well-structured software that can be designed either as fop down or bottom up
software. One of the most important tools in achieving this is function blocks.

A function block is part of a control program that has been packaged and named so
that it can be reused in other parts of the same program, or even in another program
or project. Function blocks can provide any kind of software solution from simple
logical conditions, timers or counters, to advanced control functions for a machine
or part of a plant. Since the definition of input and output data has to be very precise,
a function block can easily be used, even by other programmers than those who
developed it.

By packaging software into function blocks the internal structure may be hidden so
that well-tested parts of an application can be reused without risk of data conflict or
malfunction.

Five Languages for Different Needs

The IEC 61131-3 standard supports five of the most commonly used programming
languages on the market. Depending on previous experience, programmers often
have their personal preferences for a certain language.

Since most older programmable controllers use Ladder Diagram or Instruction List
programming, there are often many such programs available. These programs can
relatively easily be reused in new systems supporting the standard.

Today's programmable controllers can handle both logical conditions for digital
signals and arithmetic operations on analogue signals. Arithmetic operations are
much easier to program with Structured Text than with Ladder diagrams.

The initial structuring of a control application is normally best done with the
graphical language Sequential Function Chart. This method is ideal for describing
processes that can be separated into a sequential flow of steps.

130

3BSE044222R101

Appendix A IEC 61131-3 Standard Software Exchange between Different Systems

An optimal software application often contains parts written in more than one of the
five programming languages. The standard allows the definition of function block
types using all the languages.

Software Exchange between Different Systems

Before the IEC 61131-3 standard was established it was not possible to port control
programs from one vendor's programmable controller to a competing system. This
has been a major obstacle to a free market, where the customer selects a system
based on the suitability of the hardware and price, rather than by the type of
programming languages supported by the controller.

With programmable controllers that are IEC compliant the potential for porting
software is much better. Software developed for one manufacturer's system should,
at least theoretically, be possible to execute on any other IEC- compliant system.
This would open up the market dramatically resulting in better standardization,
lower prices and also improved software quality.

Unfortunately such a high level of software portability may be difficult to achieve in
practice. The IEC 61131-3 standard defines many features and only requires that
vendors of programmable controllers specify a list of which features their system
supports. This means that a system can be compliant with the standard without
supporting all features. In practice, portability will therefore be limited, since
systems from two different vendors often have different feature lists.

3BSE044222R101 131

Software Exchange between Different Systems Appendix A IEC 61131-3 Standard

132 3BSE044222R101

Appendix B Naming Conventions and Tools

For more information about naming conventions etc, when creating control
@ module types, see also the manual Library Objects Style guide.

Introduction

In order for operators and maintenance personnel to be able to quickly find
information about the status of your process and recent events, it is important that a
consistent naming strategy is used. This appendix gives advice on how to avoid
naming problems:

* Naming Conventions on page 133 gives an overview of naming conventions
that are widely used throughout the field of automation. It is recommended that
these conventions are considered when creating a naming standard.

* Suggested I/0O Signal Extensions on page 146 suggest names for types,
parameters and I/O extensions. Read this section if you need a basis for
developing naming rules.

Naming Conventions

The importance of a good naming standard cannot be over-emphasized. The
standard should be general enough to cover all possible applications and all possible
extensions or changes to the plant installation. Needless to say, the name of each
item must be unique, with no room for misinterpretation. The names used should
follow rules that are easy to learn and have precise definitions. It should be possible
for personnel at all skill levels to comprehend and use these rules.

3BSE044222R101 133

General Guidelines Appendix B Naming Conventions and Tools

Object names have been in use for a long time and certain national and international
standards have been defined. In addition, different plants and companies have
defined their own standards. These should, of course, be used as a base, which, with
small changes and/or additions, will let you take full advantage of the possibilities
offered by Compact Control Builder.

General Guidelines

When addressing a type, variable, parameter, function block, etc., excessive length
is not recommended. Bear in mind that dot-notation is used to access hierarchical
(structured) variables and if each “level” has a lengthy name, the total length of the
path will be considerable.

Object Type Names

The length of object type names should not exceed twelve characters, but if this is
not possible, up to 32 characters are allowed. If names contain an abbreviation, for
example, MMS, it is recommended that these abbreviations be written in capital
letters.

Variable Names

The identifier, the name of the variable, function block type or function, may have a
maximum length of 32 characters, and may contain letters (a—z, A-Z), digits (0-9)
and the underscore character (_). The first character must be a letter (or
underscore), and spaces are not allowed. See also Table 11 on page 137.

ﬂ More information is given in Control Builder online help. Search the index for
“naming conventions”.

Compound Words

If the parameter name is a compound word, it is recommended to write the
verb/action first, and then the noun/object on which the action should be taken. The
description field of the parameter should use the long name, for example,
AlarmCond.

134 3BSE044222R101

Appendix B Naming Conventions and Tools General Guidelines

Other Naming Issues

Several suffixes are allowed.

Do not use _ (underscore) to separate abbreviations (occupies one position and
is unnecessary).

Acronyms should be written in capital letters, for example, FBD (Function
Block Diagram).

If several information windows are required, they should be separated by
suffixes, for example NamelnfoBar, NamelnfoHist, NamelnfoPar.

Project constants should begin with a lower-case “c”, followed by an uppercase
letter. For structured data types, this rule applies to the main name only, not to
individual components.

All object names share the same name space. Therefore, it is important to avoid
names that are too general. It is recommended to name libraries and types with
a prefix, to avoid ending up with several names of the type “Motorl”,
originating from different libraries or type definitions.

Recommended Object Type Names

The following object type names are used in the standard libraries, and should also
be used when creating your own libraries.

Table 10. Recommended object type names

Object Type Description

NameTempIate(” An object type, which the user makes a self-defined type from,

and then modifies it according to the needs.
For example, EquipProcedureTemplate.

NameCore Protected core functionality, typically re-used in several

different object types. Functionality that may be subject to
changes is put outside the core. For example,
EquipProcedureCore, UniCore.

3BSE044222R101

135

General Guidelines

Appendix B Naming Conventions and Tools

Table 10. Recommended object type names (Continued)

Namelcon

If the icon is used for a particular object type, Name should be
equal to the name of that type, for example Pidlcon. If, on the
other hand, the icon is used for a certain function, Name
should be equal to that function, for example Executelcon.

NameCC

Used as suffix to all control modules that have a parameter of
the data type ControlConnection. For example: PidCC.

NameM

A control module type that has the same functionality as an
existing function block type should have the same name as
that function block type added with the suffix “M”

(for Control module type). For example:

AlarmCond - function block type

AlarmCondM - control module type

Namelnfo

Naming convention for object types that represent a popup
window in Control Builder graphics, in which information is
presented or parameter values can be set. Name corresponds
to the name of the main object type.

(1) Object types intended to be templates — types that the user has to make a new definition of and
rename before actual usage — should always have the suffix Template in the object type name.
For example, the object type name EquipProcedureTemplate.

Note that some words are reserved, which means that they cannot be used. Such
keywords, which are recognized by the IEC 61131-3 standard are, for example,

IF, THEN, ELSE.

Non-Valid Characters in Object Names

Valid characters are all ASCII characters except the ones given in Table 11. Apart
from the backslash character (\), the following combinations, which constitute
“control sequences” are not-valid in object names.

i \ t — the Tab command,

. \n — the Newline command,

. \r — the Return command.

Furthermore, an object name may not begin with a digit (0-9).

136

3BSE044222R101

Appendix B Naming Conventions and Tools

General Guidelines

Table 11. Non-valid characters.

Y2 | Half sign § |Paragraph sign

“ | Double quotation marks @ |Atsign

| Number sign £ | British pound sign
o | Currency sign $ |Dollar sign
% | Percentage sign & |Ampersand

/| Slash { |Leftcurly brace

(| Left parenthesis [|Left bracket

) | Right parenthesis] |Right bracket

= | Equals sign } | Right curly brace
+ | Plus sign ? | Question mark

\ |Backslash * | Right and left single

quotation marks

A | Circumflex Diaeresis

~ |Tilde * | Asterisk

' | Apostrophes < | The less than sign
> | The greater than sign | | The vertical bar

, |Comma ;| Semicolon

Period Colon
- |Hyphen

Project Constants

It is important that you follow certain naming conventions when naming project
constants. Apart from normal naming conventions, it is recommended that all
project constants begin with a “c”. Furthermore, it is not permitted to call
parameters and variables in POUs by the same name as a project constant. If you do
so, you might face some extremely serious situations. For example, a project

3BSE044222R101

137

Variables

Appendix B Naming Conventions and Tools

Variables

constant with the name “Max” is not a good idea. If you also define a local variable
with the name “Max”, this will take precedence over the project constant, which
could lead to severe problems. Use the name “cMax” instead or, even better, a more
descriptive name such as “cMaxTempAllowedInTank”.

Naming of variables is especially important in templates (compared to hidden or
protected code), since the user should be able to easily understand the design and
function of any given template. Some general recommendations on variable names
are given below:

* Variable names should be descriptive.

You may find it useful to add a suffix “v” to the variable name for local variables
and an “e” for external variables

e Underscore (_) should not be used. To separate parts of a name, use uppercase
letters instead.

* Avoid global/external variables, whenever possible.
* Avoid access variables, whenever possible.
* Avoid very long names, especially in FBD.

* Add the suffix Old to the variable name, to create a variable that keeps the old
value.

* Add the suffix Loc to the variable name, to create a variable that is a working
copy of, for example, an EDIT parameter.

ﬂFor information on project constants, see also the Basic Control Software manual.

Types and Parameters

Data Types

The naming rules for data types are essentially the same as for object types. That is,
it is recommended that the length of data type names does not exceed 12 characters.
When this is not possible, up to 32 characters are allowed.

138

3BSE044222R101

Appendix B Naming Conventions and Tools Types and Parameters

You may find it helpful to add a suffix “Type” to your function block, module and
data types to explicitly show that it is a type.

Parameters

The need for short names is greater in function block types, than in control module
types. Therefore, the guidelines on parameter naming differ somewhat in this
respect. The names in Suggested I/O Signal Extensions on page 146, Table 10 on
page 135 are reserved for special types of parameters. F'B and M denote that the
name applies to function block types and control module types, respectively.
However, a parameter used in both function block types and control module types
should have the same name throughout all types.

Short function block type and parameter names are important with respect to how
many function block symbols that will fit on a screen or printed page in the Function
Block Diagram (FBD) language. In FBD, the possibility to simultaneously see
many symbols and their connections is essential to readable logic. Unnecessary
paging (both on screen and in printout) has a negative effect on readability, and
requires more space for page references.

Also, note that using upper- and lower-case letters improves the readability of
names, for example, ManMode is better than MANMODE. POU editors allow the
use of upper- and lower-case letters for declaration of parameter names, and allows
the user to refer to the name in any form, as long as the letters are the same (for
example, entering ManMode is the same as entering MANMODE).

A short name is more space efficient and easier to read. This assumes, of course,
that the user knows what the name means. Standardized short names or acronyms
are most helpful in this respect, for example, PV = Process Value, and 7 = time. It
should also be kept in mind that a long name does not necessarily provide more — or
enough — information. Hence, a shorter name together with a good description often
proves to be the best alternative.

In addition, in the editor, it is often possible to show the parameter description
adjacent to the parameter name, for greater clarity. Seldom used, or unusual,
parameter names may require longer names to be understandable (for example
SourceSuffix), compared to traditionally used names (for example. Min).

The length of parameter names in functions and function block types should not
exceed eight characters (however, the system allows longer names for parameters,

3BSE044222R101 139

Types and Parameters Appendix B Naming Conventions and Tools

up to the system limit of 32 characters). These restrictions also apply to graphically
connected parameters in control module types. Other parameter names in control
module types should be as short as possible, and easy to understand.

Full Names and Short Counterparts for Type Names and Parameter Names

There are no strict rules on how to construct a short name, but the following
methods should be considered.

* Use only part of a whole word.
Example: Request = Req

e Remove all vowels (and some consonants).
Example: Print = Prt

e Use a new word.
Example: Communication Link = COMLI

Use the description field in Control Builder editors to provide a short name with its
full name. Example: The description field for the parameter PrtAckAlarms may
contain “Prints acknowledged alarms...” etc.

A list of names and recommended abbreviations of names for types and parameters
is given in the Library Object Style Guide manual.

140

3BSE044222R101

Appendix B Naming Conventions and Tools Programs

Programs

Tasks

Libraries

Control Module Types

The use of short names is not as critical for control module types, as for function
blocks types. The reason for this is that:

* object type names and parameter names are not always shown in the CMD
(Control Module Diagram) editor,

* the requirement that graphical representation of a function block diagram
should be as clear and easy as possible to understand calls for short, descriptive
and easily understandable names. This requirement is not as strong for control
module diagrams.

However, when zooming in on the control module diagram, or when showing the
parameter list for a control module type, the parameter names are shown, and they
should therefore not be unnecessarily long.

Names of control module types should end with the suffix M, if there is a function
block type with identical functionality.

It is recommended that you change the standard names for program POUs, from
“Program1” etc. to what the programs actually do in the application, for
example, “PIDControl”.

It is recommended that you change the standard names for the tasks, from for
example “Slow”, to what the tasks actually do control. However, do not include
task-specific information such as interval time, offset, etc. in the name.

You can read more about tasks in the Basic Control Software manual.

Standard Libraries

The name of a library should include upper- and lower-case letters, forming the
structure “LibNameLib”. That is, the different parts of the name should be separated

3BSE044222R101 141

/O Naming

Appendix B Naming Conventions and Tools

®

I/0 Naming

with upper-case letters and the name string should always end with “Lib”. The
maximum string length may not exceed 20 characters (letters or figures), and some
names are reserved.

Split Libraries

Split libraries are libraries that belong to a certain functionality family. Control
libraries, in which the total functionality is split into several libraries, are examples
of this. They all have control functionality in common, but are divided into
categories, for example, ControlStandardLib, ControlAdvancedLib, and so on. The
naming rules for split libraries should follow this example, that is, first the function
family (Control), then the sub-category (for example “Advanced”), and, finally, the
suffix “Lib”.

Another example of this principle is a hidden-contents library that contains basic
control functions; such a library could be named ControlSupportLib. That is, in a
hidden-contents library, the word “Support” should always be included, between the
main part of the name and the “Lib” suffix.

An object type name should be unique, not only within a library, but throughout all
libraries. Remember that an object type is referenced by its name only, in other
words, not by the name of the library.

As for library names, the object type name should start with an upper-case letter,
and different parts of the name should be separated by capital letters, such as
PidCascadeLoop and FFToCC

A library may not have the same name as an application. If this happens, the
handling of coldretain values will fail in certain situations.

Aspect objects should be categorized in such a way that, for example, the names of
all motors contain the string Motor, all valves contain the string Valve, all PID
controllers the string PID, and so on.

An object name should locate the object in the project, state the function of the
object, and uniquely define the individual object. This can be achieved with a
designation according to the following example:

142

3BSE044222R101

Appendix B Naming Conventions and Tools I/O Naming

XXX YYY Z2ZZ VVVVV

| L Extension
Individual number

Function code
Location

Figure 57. Object name syntax.

Location

The 3-character location “block™ is a concatenation of a letter and two digits,
describing the Area “block”. The Area “block” consists of the concatenation of two
digits, the first describing the process area, and the second the process equipment.

Function Code

Function codes for instrumentation functions have been in use for a long time and
can be found in several national and international standards (for example ISA at
WWW.isa.org).

Function codes should be reduced to two characters that indicate the main function.
An LIC, would for example, be written LC.

There is no widespread standard for function codes for electrical equipment, and the
simplest way of designating them is to use the equipment number or the code M, for
a motor. A more elaborate standard is to define codes such as PU for pumps, FA for
fans, etc. Ensure that you do not use any function code already used for instrument
functions.

Individual Object Number

An individual object number is a sequential number within the part of the process
addressing a single piece of equipment.

The individual object is defined by a three- or four- (electrical) digit number. These
numbers can be divided into series used for instrument and electric functions, for
convenience. If a process area has parallel lines or equipment, the same object
number should be used for the same function on the parallel lines, using the location

3BSE044222R101 143

/O Naming

Appendix B Naming Conventions and Tools

definition to create unique object names. This will help operators and others to
remember object names.

Extension

The extension is defined as a 2—5 character code to identify single signals related to
a main object.

A list of examples of different I/O and calculated signals, for which extensions
should be defined, can be found in Suggested I/O Signal Extensions on page 146.

Example (analog control)

Al PID AO
A21FT121A A21FIC121A A21FV121A

Figure 58. Analog control

144

3BSE044222R101

Appendix B Naming Conventions and Tools Collect I/O

Collect I/0

Parameters

Example (digital or Boolean control)

Limit Switch Close Command Open
A21HS155ZSC Valve A21HS1550PN
Limit Switch Open A21HS155 Command Close
A21HS155ZS0 A21HS155CLS

Figure 59. Digital or Boolean control

You may collect all your I/O in a structured type. For such design, it is
recommended that you add the prefix “IO_" to this structured type. For example, if
the type is named “MotorType”, its I/O data type could be called “IO_MotorType”.
The parameter of the type could be named “IO” (of “IO_MotorType”).

For examples on how to use structured data types, see Structured Data Type
Examples on page 97.

All objects with an Alarm Condition must have the Name and a Description
parameter connected.

It is never a problem to have a Name parameter in control module types. In function
block types, however, care must be taken, since the parameter is copied to a local
copy in the function block, which consumes memory and degrades performance.

Descriptions

A description should be provided, whenever possible. This means that all object
types and data types should have a brief (three or four short lines) but clear
description which is shown under the Description tab in the lower pane of Project
Explorer, when the object is selected.

A structured data type component should have a line of text briefly describing its
purpose/function. Use the column specifically designated for this in the POU/object
type editor. Parameters in object types should be described in a similar way.

3BSE044222R101 145

Suggested I/0 Signal Extensions

Appendix B Naming Conventions and Tools

Suggested I/O Signal Extensions

Table 12. Extensions for digital inputs.

Suggested extension

Suggested extension

Function or function Function or function
Alarm ALM Local forward LFWD
Alignment ZSA Local reverse LREV
Automatic control AUTO Local start LSTR
(order)
Bypass BYP Local stop LSTP
Clear CLR Main contactor M
acknowledge
Close CLS Main contactor MF
acknowledge, forward
Control voltage CTRLV Main contactor MH
acknowledge, high /
fast
Cycle CcyC Main contactor ML
acknowledge, low /
slow
Decrease (Local) LDEC Main contactor MR
acknowledge, reverse
Emergency pull cord SAFE Main contactor position MPOS
switch
Emergency stop ESTOP Manual control (order) MAN
Fast FST Off OFF
Fault FLT On ON
Flow high FSH Operating time oT
Flow low FSL Overload relay oL
146 3BSE044222R101

Appendix B Naming Conventions and Tools

Suggested I/0 Signal Extensions

Table 12. Extensions for digital inputs. (Continued)

Function | SU9OSEledeenson | pypron | SgoEstedextension
Forward FWD Pressure high PSH
Hand HND Pressure low PSL
High HI Ready RDY
Increase (Local) LINC Remote control (order) REM
Interlock INT Reverse REV
Jog (Inch) JOG Run RUN
Jog forward JFWD Selector switch S1
Jog reverse JREV Speed switch (Monitor) SS
Level high LSH Speed switch high SSH

(Monitor high)
Level low LSL Speed switch low SSL
(Monitor low)
Limit switch ZS Start STRT
Limit switch close ZSC Stop STOP
Limit switch down ZSD Temperature high TSH
Limit switch forward ZSF Temperature low TSL
Limit switch in ZSlI Test TST
Limit switch open (or ZS0 Torque monitor close WSC
out)
Limit switch reverse ZSR Torque monitor open WSO
Limit switch up ZSU Torque switch WS

3BSE044222R101

147

Suggested I/0 Signal Extensions

Appendix B Naming Conventions and Tools

Table 13. Extensions for digital outputs.

Suggested extension or

Suggested extension

Function . Function .
function or function

Blocking BLK Main contactor MFWD
forward

Close valve CLS Main contactor high / MHGH
fast

Decrease DEC Main contactor low / MLOW
slow, Crawl

Electrically EV Main contactor open MOPN

operated valve

Electrically EVC Main contactor MREV

operated valve reverse

close

Electrically EVO Main contactor MSEL

operated valve selector

open

Increase INC Main contactor start MSTR

Lamp (pilot) H1 Main contactor stop MSTP

Local/Remote LR Open valve OPN

Main contactor MCLS Solenoid valve XV

close
Trip or shutdown of TRIP
external equipment

148 3BSE044222R101

Appendix B Naming Conventions and Tools

Suggested I/0 Signal Extensions

Table 14. Extensions for analog inputs.

Suggested extension

Suggested extension

Function or functions Function or functions
Actuator position ZT,POS Power JT
Analysis AT Power (reactive) QT
Consistency NT Power factor (capacitive) PFC
Flow FT Power factor (inductive) PFI
Frequency HZ Pressure PT
Level LT Speed ST
Load WT Temperature TT
Measured Value MV Transmitter (general) T
(General)

Motor current (Alt. 1) IT Vibration XT
Motor current (Alt. 2) CURR Viscosity VT
Operating time oT Voltage uT

Table 15. Extensions for analog outputs.

Suggested extension

Suggested extension

valve

Function or functions Function or functions
Control valve (general) \ Output (General) ouT
Flow control valve FV Pressure control valve PV
Indication IND Set-point SETP
Level control valve Lv Temperature control TV

The list shows examples of 1/O signals. More types can be defined as desired.

3BSE044222R101

149

Name Handling Appendix B Naming Conventions and Tools

Name Handling

This section contains a brief description of avoiding name conflicts.

Avoid Name Conflicts for Types—Type Qualification

Type qualification increases the freedom to name types after their logical context,
even if the same type name exists in different libraries and/or applications. To
address a specific type, use the following syntax:

LibraryOrApplicationName.TypeName

Type Qualification Example

A control project contains two libraries (MyLib1 and MyLib2), and both libraries
contain a function block type MyFBtype. MyApplication has both libraries
connected and needs to call MyFBtype, see Figure 60.

There is a need to separate between the two libraries, when referencing this type.
Normally, this would generate an error message from the compiler, since the
function block type 'MyFBtype' is defined in both 'MyLib1' and 'MyLib2'".

B B Libraries

+-E] System

+-] BasicLib 1.4-0

+-F] Ieonlib 1.1-3

=% MyLibl 1.0-0 -

--B] Cornected Libraries
B BasicLib 1.4-0
@ Data Types

? ﬂg“;ﬁl?:;fgj“’p;s MyLib1 and MyLib2 both

> ﬁ?znltrglg"odu'e Types contain a function block
= oL - 47
--B] Cornected Libraries named MyFBtype
B BasicLib 1.4-0
@ Data Types
--4 Function Block Types
4} MyFBtype -
42 Control Module Types
+ Hardware
] Applications
= ‘él MyApplication_1 - {Controller_1.Mormal)
Connected Libraries

] BasicLib 1.4-0
Bl mylibt 1.0-0
Bl myLibz 1.0-0
Figure 60. MyApplication has two libraries connected that contain the function

block MyFBtype. A function block call to MyFBtype will cause a name conflict.

150 3BSE044222R101

Appendix B Naming Conventions and Tools Avoid Name Conflicts for Types—Type Qualification

This is avoided by declaring which library or application the type belongs to, before

addressing it, see Figure 61.

MNare Function Block Type

Task Connection

b MyLib1.MyFBtype

Description i‘

1
2

% Variahles }\ Function Blocks

e

-

Figure 61. The MyFBtype name conflict is avoided by first pointing to the library in
the Program editor, and then referencing the function block type.

3BSE044222R101

151

Avoid Name Conflicts for Types—Type Qualification Appendix B Naming Conventions and Tools

152 3BSE044222R101

A

acronyms 135
advantages
small applications 37
alarm event optimization 122
applications
several in one controller 37
split on several controllers 36
attributes
NoSort 17, 106
Retain 121

C
calculate
offset for tasks 127
call
function blocks 80
capacity
CPU 33
characters
non-valid 136
code blocks
in SFC 115
sorting 102
code loop
error log 107
code loops 104
correct 107
code sorting 17, 102
control modules 102
correct problems 114
loop error 17
collect
I/0 145
commands

NoSort 17
communication 34
conflicts

names 150
control module types

naming 141
control modules

code sorting 102
controllers

distributed execution 36

multiple applications 37
correct

code loop errors 107

code sorting problems 114
CPU

capacity 33

priority 33
custom

data types 30
cyclic load

maximum 34

D
data types
create 30
custom 30

naming 138

structured 30
Description parameter 145
descriptions

naming 145
disadvantages

small applications 37
distributed execution 36
document conventions 10

INDEX

3BSE044222R101

153

Index

E
EnableStringTransfer 37
error logs
code loops 107
erTors

code sorting loop 17
execution

distributed 36

function blocks 81

rules for tasks 116

FBD 29, 44

function blocks 83
Function Block Diagram 29, 44
function blocks

call 80

enable/disable inputs 83

execution 81

FBD and LD 83

key features 78

parameters 79

ST and IL 83

using control module interaction windows 96

|

1/0

collect 145

naming 142
IL 29, 44

function blocks 83
inputs

disable 83

enable 83
Instruction List 29, 44

Ladder Diagram 29
languages
FBD 44

IL 44

LD 45

SEC 45

ST 44
LD 29

function blocks 83

Ladder Diagram 45
libraries

naming 141

self-defined 18

standard 18
literals 95

vS. project constants 95

M
ModuleBus
scan cycle time 34

N

name conflicts

solve 150
Name parameter 145
name standard 133
names

solve conflicts 150
naming

control module types 141

data types 138

descriptions 145

/O 142

libraries 141

parameters 138

programs 141

tasks 141

types 138
naming conventions 135
non-valid characters 136
NoSort

attribute 17, 106

154

3BSE044222R101

Index

0 SFC 29, 45
object types short names
naming 134 parameters 140
recommended names 135 types 140
offset small application
calculate for tasks 127 advantages 37
optimize disadvantages 37
alarms 122 solve
own libraries 18 name conflicts 150
sorting
P correct problems 114
parameters ST 29,44
Description 145 function blocks 83
function blocks 79 standard libraries 18
Name 145 state variables 105

strings 121

naming 138
structured data types 30

priority
CPU 33 Structured Text 29, 44
programming syntax
FBD language 44 addressing types 150
IL language 44
languages 44 T
LD language 45 tasks
SFC language 45 calculate offset 127
ST language 44 execution rules 116
programs naming 141
naming 141 terminology 11
project constants types
vs. literals 95 address 150
naming 138
R syntax 150
Retain
attribute 121 U
unused
S variables and parameters 96

scan cycle time user-defined

ModuleBus 34 data types 30
self-defined libraries 18
Sequential Flow Chart 29 \')
Sequential Function Chart 45 variables

3BSE044222R101 155

Index

allowed characters 138
naming 134, 138
state 105

WriteVar 37

156

3BSE044222R101

3BSE044222R101. Printed in Sweden June 2006
Copyright © 2003-2006 by ABB. All Rights Reserved
® Registered Trademark of ABB.

™ Trademark of ABB.

http://www.abb.com

Automation Technology Products Automation Technology Products
Wickliffe, Ohio, USA Vésteras, Sweden
www.abb.com/controlsystems www.abb.com/controlsystems

Automation Technology Products
Mannheim, Germany
www.abb.de/controlsystems

	HOME
	Application Programming
	TABLE OF CONTENTS
	About This Book
	General
	Document Conventions
	Warning, Caution, Information, and Tip Icons
	Terminology

	Section 1 Design Issues
	Introduction
	Conceptual Issues
	Traditional or Object-Oriented Programming?
	List- or Data Flow-Driven Execution?
	Libraries
	Code Organization
	Programming Languages
	Structured Data Types

	Performance Issues
	Memory Consumption
	Calculations and Performance Data
	Choosing Controller Hardware
	Distribution on Applications and Controllers

	Limitations
	OPC Server Limitations
	Application Size Limit
	Maximum Number of Controllers, Applications, Programs and Tasks
	Maximum Number of POUs and Variables
	INSUM Limitations

	Section 2 Programming Languages
	General
	Structured Text, ST
	Suitable for Complex Calculations and Looping
	High Threshold for Programmers
	Functions in ST

	Function Block Diagram, FBD
	Similar to Electrical Diagrams
	Boolean Functions and Feedback are Easy to Implement
	Not Suitable for Conditional Statements
	Functions in FBD
	Standard Function Block Types

	Ladder Diagram, LD
	Easy to Understand
	Weak Software Structure
	Limited Support for Sequences
	Difficult to Reuse Code
	Functions in LD

	Instruction List, IL
	Best System Performance
	Weak Software Structure
	Machine-dependent Behavior
	Functions in IL
	Example
	Result Register

	Sequential Function Chart, SFC
	Powerful Tool for Design and Structuring
	Other Programming Languages are Needed
	Functions in SFC
	Chart Structure
	Steps and Transitions
	Action Descriptions
	Sequence Selection and Simultaneous Sequences
	Subsequences
	Advice on Good Programming Style

	Section 3 Programming in Practice
	Introduction
	Organizing Code
	Programming with Function Blocks
	Function Block Calls
	Function Block Execution
	Function Block Code Sorting
	Control Modules in Function Blocks
	Continuous and Event-Driven Execution of Function Blocks
	Self-Defined Types
	Structured Data Type Examples

	Code Sorting
	Code Loops
	Variable State
	NoSort Attribute
	Interpret and Correct Code Loop Errors

	Code Optimization
	Basic Rules and Guidelines Regarding Tasks and Execution
	Function Block, Operation, and Function Calls
	Firmware Functions for Arrays and Struct
	Excessive Conditional Statements
	16- or 32-Bit Data Variables
	Variables and Parameters
	Code Optimization Example

	Task Tuning

	Appendix A IEC 61131-3 Standard
	Main Objectives
	Benefits Offered by the Standard
	Well-structured Software
	Five Languages for Different Needs
	Software Exchange between Different Systems

	Appendix B Naming Conventions and Tools
	Introduction
	Naming Conventions
	General Guidelines
	Variables
	Types and Parameters
	Programs
	Tasks
	Libraries
	I/O Naming
	Collect I/O
	Parameters
	Descriptions
	Suggested I/O Signal Extensions

	Name Handling
	Avoid Name Conflicts for Types-Type Qualification

	INDEX

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Emulate Acrobat 4 CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Emulate Acrobat 4)
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /AllegroBT-Regular
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /AvantGardeITCbyBT-Book
 /AvantGardeITCbyBT-BookOblique
 /AvantGardeITCbyBT-Demi
 /AvantGardeITCbyBT-DemiOblique
 /BabyKruffy
 /BankGothicBT-Medium
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BenguiatITCbyBT-Bold
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BernhardFashionBT-Regular
 /BernhardModernBT-Bold
 /BernhardModernBT-BoldItalic
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BremenBT-Bold
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /CharlesworthBold
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothicBT-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /DauphinPlain
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /English111VivaceBT-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /FuturaBlackBT-Regular
 /FuturaBT-Bold
 /FuturaBT-BoldItalic
 /FuturaBT-ExtraBlack
 /FuturaBT-Light
 /FuturaBT-LightItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyHandtooledBT-Regular
 /GoudyOldStyleBT-Bold
 /GoudyOldStyleBT-BoldItalic
 /GoudyOldStyleBT-Italic
 /GoudyOldStyleBT-Roman
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Humanist521BT-Bold
 /Humanist521BT-BoldItalic
 /Humanist521BT-Italic
 /Humanist521BT-Roman
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /KabelITCbyBT-Book
 /KabelITCbyBT-Ultra
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /Lithograph-Bold
 /LithographLight
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MT-Extra
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /OzHandicraftBT-Roman
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /PosterBodoniBT-Roman
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /SerifaBT-Bold
 /SerifaBT-Italic
 /SerifaBT-Roman
 /SerifaBT-Thin
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /SouvenirITCbyBT-DemiItalic
 /SouvenirITCbyBT-Light
 /SouvenirITCbyBT-LightItalic
 /Staccato222BT-Regular
 /Stencil
 /Swiss911BT-ExtraCompressed
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /TypoUprightBT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /WP-ArabicScriptSihafa
 /WP-ArabicSihafa
 /WP-BoxDrawing
 /WP-CyrillicA
 /WP-CyrillicB
 /WP-GreekCentury
 /WP-GreekCourier
 /WP-GreekHelve
 /WP-HebrewDavid
 /WP-IconicSymbolsA
 /WP-IconicSymbolsB
 /WP-Japanese
 /WP-MathA
 /WP-MathB
 /WP-MathExtendedA
 /WP-MathExtendedB
 /WP-MultinationalAHelve
 /WP-MultinationalARoman
 /WP-MultinationalBCourier
 /WP-MultinationalBHelve
 /WP-MultinationalBRoman
 /WP-MultinationalCourier
 /WP-Phonetic
 /WPTypographicSymbols
 /ZapfElliptical711BT-Bold
 /ZapfElliptical711BT-BoldItalic
 /ZapfElliptical711BT-Italic
 /ZapfElliptical711BT-Roman
 /ZurichBT-RomanExtended
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /SyntheticBoldness 1.000000
 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [530.079 643.465]
>> setpagedevice

