

Technical Manual

Version 3231000 Item no. 2 543 045

RA 58-P with PROFIBUS DP

 $\ensuremath{\mathbb{C}}$ by HENGSTLER

HENGSTLER claims copyright protection for this documentation.

This documentation must not be modified, amended, copied or given to third parties without prior written approval by HENGSTLER.

HENGSTLER GmbH P.O. Box 11 51 D-78 550 Aldingen, Germany

Telephone:+49-7424-89 407 Fax: +49-7424-89 370

Date of issue: September 2001

We reserve the right to make technical modifications and improvements, which serve the advancement of our products.

Contents

1 Definitions	6
2 Safety and Operating Instructions	8
3 General Information	9
3.1 Introduction	9
3.2 Field of Application	9
3.3 Basic Functions of the PROFIBUS DP	
3.4 Essential Features/ Speed	11
3.5 Configuration of the System and Device Types	
3.6 System Performance	13
3.7 Cyclical Data Transfer between DPM1 and the DP Sla	aves14
3.8 Data Traffic between DPM1 and Project Planning Dev	vices15
3.9 Sync Mode	
3.10 Protective Mechanisms	
3.11 Communication Interface	
4 Overview Encoder Functions	17
5 Configuration (DDLM_Chk_Cfg)	
6 Operating parameters (DDLM_Set_Prm)	
6.1 Overview	
6.2 Definition of Special Function Parameters	20
6.2.1 Suppress Operation Time Counter	GEHEZUSEITENREF21
6.2.2 Do not store Preset	GEHEZUSEITENREF21
GEHEZUSEITENREF21GEHEZUSEITENREF22GEHEZ	USEITENREF226.3 Definition of
Operating Parameters	GEHEZUSEITENREF22
6.3.1 Code Sequence	21
6.3.2 Class 2 Functionality	21
6.3.3 Maintenance Diagnosis	21
6.3.4 Scaling Function	22
6.3.5 Sampling	22

6.4 Measuring Steps per Revolution	23
6.4 Total Number of Measuring Steps	23

7 Data exchange (DDLM_Data_Exchange)	24
7.1 Standard Configuration:	25
7.2 Optional Configuration	25
7.3 Manufacturer Specific Configuration with Speed and Acceleration	26
8 Diagnostic Functions (DDLM_slave_Diag)	27
8.1 Diagnostic Functions Class 1	28
8.1.1 Diagnostic Header	28
8.1.2 Alarm Messages	28
8.1.3 Operating Status	29
8.1.4 Shaft Encoder Type	
8.1.5 Physical Singleturn Resolution	
8.1.6 Physical Multiturn Resolution	
8.2 Diagnostic Functions Class 2	31
8.2.1 Additional Alarm Messages	31
8.2.2 Supported Alarm messages	31
8.2.3 Warnings	32
8.2.4 Supported Warnings	
8.2.5 Profile Version	33
8.2.6 Software Version	
8.2.7 Operating Time	
8.2.8 Offset Value	34
8.2.9 Measuring Steps per Revolution	35
8.2.10 Total Number of Measuring Steps	35
8.2.11 Serial Number Encoder	35
9 Bus Connection	
9.1 Bus Connection of the Encoder	36
9.2 Connection Types	37
9.2.1 Connection Type BusTerminal Box	37
9.2.2 Connection Type Connector 2-fold	

10 Control Elements	
10.1 Setting the device address	40
10.2 Activating the bus terminating resistor	40
11 Configuration and Parameterisation of the Encoder:	41
11.1 Configuration example using Step 7 (Siemens)	
11.2 Summary of GSD parameters:	44
11.3 Configuration Example:	46
12 Technical Data	GEHEZUSEITENREF52
13 Dimensioned Drawings	GEHEZUSEITENREF52
14 Ordering Information	GEHEZUSEITENREF52

1 Definitions

This technical manual describes the software, parameter setting and initial operation of the shaft encoder.

Explanation of symbols:

Passages to which special attention should be paid in order to ensure the correct use and to avoid **dangers** are marked by the symbol on the left.

This symbol indicates important directions for the **proper use** of the shaft encoder. *The non-observance of these instructions may lead to malfunctions in the shaft encoder or its surrounding parts.*

This symbol provides **hints for use** and other extremely useful information. *They help you to make optimal use of all the shaft encoder's functions.*

This symbol indicates instructions for action.

Abbreviations used

ASIC	Application specific integrated circuit
DP	"Decentral periphery" (local I/O modules)
DPM1	DP master (Class 1) DPM1 is the central programmable controller for PROFIBUS DP
DPM2	DP master (Class 2) DPM2 is a project planning and configuration device for PROFIBUS DP
GSD	Device master data Electronic device data sheet
НМІ	Human Machine Interface Operator panels and monitoring devices
KBL	List of communication relations The KBL contains a list of all communication relations of a station.
KR	Local abbreviation for a communication relation
MAC	The MAC determines, when a device is granted the right to send data

ov	Object Directory The OV contains the description of all communication objects of a device
SAP	Service Access Point Service access point in the PROFIBUS layer 2
TSDI	Station Delay Time Initiator Call delay time of the initiators
TSDR	Station Delay Time Responder Response delay time of the responder
VFD	Virtual Field Device The VFD is the part of a real device which can be reached by communication

Miscellaneous:

Numerical data: Unless indicated explicitly, decimal values are represented as figures without any additional features (e.g. 1408), binary values are marked **b** (e.g. 1101b) hexadecimal values **h** (e.g. 680h) at the end of the figures.

2 Safety and Operating Instructions

- The RA 58 model series' absolute shaft encoders are quality products which have been manufactured according to recognised electrical engineering regulations. The devices have left the manufacturing company's premises meeting all relevant safety requirements.
- In order to preserve this condition and ensure an interference-free operation of the encoders, the technical specifications presented in this documentation must be observed.
- Electrical appliances must only be installed by skilled electricians!
- The devices must only be operated within the limits defined in the technical data.
- The maximum operating voltages must not be exceeded!! The devices have been constructed according to DIN EN 61010 Part 1, protection class III. In order to avoid dangerous electric shocks, the devices have to be operated with safety extra-low voltage (SELV) and be situated in a field with equipotential bonding.
- For better protection use an external fuse (see Chapter 14,).
- Field of application: industrial processes and control systems. Overvoltages at the connection terminals have to be restricted to overvoltage category II values.
- Shock effects on the housing, especially on the encoder shaft, as well as axial and radial overloading of the encoder shaft should be avoided.
- Only in case an appropriate coupling is used can the maximum precision and lifetime be guaranteed.
- The proper electromagnetic compatibility values (EMC) are only valid for standard cables and plugs. In the case of screened cables, the screen has to be connected on both sides as well as on large surface to ground. The lines for power supply should also be entirely screened. If this is not possible, appropriate filter methods should be applied.
- The neighbouring parts as well as the installation of the cable system have a significant influence on the electromagnetic compatibility of the shaft encoder. As a consequence, the electrician has to ensure the EMC of the entire system (device).
- In regions endangered by electrostatic discharge, a good ESD protection for the plugs and the cable to be connected should be provided when installing the shaft encoder.

3 General Information

In this manual, the basic functions of the PROFIBUS DP are only described in extracts. For additional information, please refer to the standards on PROFIBUS DP, i.e. DIN 19245-3 and EN 50170 respectively.

3.1 Introduction

The RA 58 is an absolute shaft encoder (encoder, angle encoder). The version described in this manual sends its current position to another station via the transmission medium "PROFIBUS DP" (physically: screened and twisted pair line). The RA58 supports all class 1 and 2 functions listed in the encoder profile.

PROFIBUS is manufacturer independent, open field bus standard for a variety of applications in the field of production, process and building services automation. The requirements of openness and independence from the manufacturer are stipulated in the European standard EN 50 170. PROFIBUS permits the communication of devices produced by different manufacturers without any particular adaptations of the interfaces.

PROFIBUS DP is a special standard version for a quick data exchange within the field level, which has been optimised in terms of speed and low connection costs. Central control systems like, for example SPC/ PC communicate via a quick, serial connection with local field devices like drives, valves, or encoders. The data exchange between these devices is predominantly cyclic. The communication functions required for this exchange are determined by the basic functions of the PROFIBUS DP according to the EN 50 170 European standard.

3.2 Field of Application

In systems where the position of a drive or of any other part of a machine has to be recorded and signalled to the control system the RA58 can assume this function. The RA58 can resolve, for instance, positioning tasks by sending the checkback signal concerning the present drive position via the PROFIBUS DP to the positioning unit.

3.3 Basic Functions of the PROFIBUS DP

The central control system (master) cyclically reads out the input information from the slaves and writes the output information to the slaves. For this purpose, the bus cycle time has to be shorter than the program cycle time of the central SPC, which amounts to approx. 10 ms for various applications. Apart from the cyclic user data transfer, the PROFIBUS DP version also disposes of powerful functions for diagnosis and initial operation procedures. The data traffic is controlled by watchdog functions on both the slave and the master side. The following table summarises the basic functions of the PROFIBUS DP.

Transmission	RS-485 twisted pair line
	Baud rates ranging from 9.6 kbit/s up to 12 Mbit/s
Bus access:	 Token passing procedure between the masters and master-slave procedures for slaves
	 Monomaster or multimaster systems possible
	 master and slave devices, max. of 126 stations at a single bus
Communication:	 Point-to-point (user data communication) or multicast (control commands)
	 cyclical master-slave user data communication and acyclical master- master data transfer
Operating state:	 Operate: cyclical transfer of input and output data
	 Clear: The input data are read, the output data remain in the safe status
	Stop: only master-master data transfer is possible
Synchronisation:	 Control commands enable a synchronisation of the input and output data
	 Sync mode: Output data are being synchronised
Functionality:	Cyclical user data transfer between DP master and DP slave(s)
	 Single DP slaves are dynamically activated or deactivated
	 Control of the DP slave's configuration. Powerful diagnostic functions, 3 stepped diagnostic message levels.
	 Synchronisation of in- and/ or output
	 Address assignment for the DP slaves via the bus
	 Configuration of the DP masters (DPM1) via the bus
	 Maximum of 246 byte input and output data per DP slave possible
Protection functions:	All messages are transferred with a hamming distance of HD=4
	Response control at the DP slaves
	 Access protection of the DP slaves input/ output Manifesting of the user data assume institute with a directable control time of
	Monitoring of the user data communication with adjustable control timer at the master
Device types:	 DP master class 2 (DPM2), e.g. programming/ project planning devices DP master class 1 (DPM1), e.g. central automation devices like SPC
	PC
	 DP slave e. g. devices with binary or analogue input/ output, drives, valves

3.4 Essential Features/ Speed

The PROFIBUS DP only requires approx. 1 ms at a speed of 12 Mbit/s in order to transfer 512 bit input and 512 bit output data by means of 32 stations.

The following diagram shows the usual PROFIBUS DP transfer time interval in relation to the number of stations as well as the transmission speed. The high speed can be above all explained by the fact that the input and output data within a message cycle are transferred by using the layer 2 SRD service (Send and Receive Data Service).

Bus cycle time of a PROFIBUS DP monomaster system Boundary conditions : Each slave has 2 byte input and 2 byte output data; the minimum slave interval time amounts to 200 microseconds; TSDI = 37 bit times, TSDR = 11 bit times

Diagnostic function:

The comprehensive diagnostic functions of PROFIBUS DP allow a quick localisation of the errors. The diagnostic messages are transferred by means of the bus and are assembled at the master. They are subdivided in three levels:

Station-related diagnosis

Messages on the general readiness for service of a station, like for example, overtemperature or undervoltage.

Module-related diagnosis

Theses messages indicate that a diagnosis within a certain I/O part (e.g. 8 bit output module) of a station is in hand.

Channel-related diagnosis

The error cause in relation to a single input/ output bit (channel) is indicated here, like for example, a short-circuit at output line 7.

3.5 System Configuration and Device Types

By means of PROFIBUS DP, mono- and multimaster systems can be realised. For this reason, a high level of flexibility in terms of the system configuration can be achieved. A maximum of 126 devices (master or slaves) may be connected to a bus. The definitions for the system configuration contain the number of stations, the assignment of the station address to the I/O addresses, the data consistency of the I/O data, the format of the diagnostic messages and the bus parameters used. Each PROFIBUS DP system consists of different device types. There are three device types to be distinguished:

DP master class 1 (DPM1)

These devices are central control systems exchanging information with the local stations (DP slaves) during a fixed message cycle. Typical devices of this kind are stored-program controllers (SPC), PC or VME systems.

DP master class 2 (DPM2)

Programming, configuration devices, and operator panels belong to this category. They are used for the initial operation procedures in order to establish the configuration of the DP system, or to operate the plants in the course of operation.

DP slave

A DP slave is a peripheral I/O rack (I/O, drives, HMI, valves) that reads the input information and sends output information to the peripheral equipment. Devices, which provide only input or only output information, might also be used.

The amount of input and output information is device specific and must not exceed 246 byte for the input and 246 byte for the output data.

PROFIBUS DP monomaster system

In the case of monomaster bus systems, there is only one master active at the bus during the on-line phase of the bus system. The above diagram shows the system configuration of a monomaster system. The SPC based control system is the central control element. By means of the transmission medium, the DP slaves are locally linked to the SPC control system. By using this system configuration, the shortest bus cycle time can be obtained.

In the multimaster mode, several masters are linked to a single bus. They either form independent subsystems consisting of one DPM1 and its corresponding DP slaves each, or additional configuration and diagnostic devices (see diagram below). The I/O maps of the DP slaves can be read by all DP masters, but only one DP master, the one which has been assigned DPM1 during project planning, is able to write the output information. Multimaster systems attain a medium bus cycle time.

PROFIBUS DP multimaster system

3.6 System Performance

In order to obtain a high level of exchangeability between the devices, the system performance of PROFIBUS DP has also been standardised. It is mainly determined by the operational status of the DPM1.

The DPM1 can either be controlled locally or via the bus by the project planning device. The following three main states can be distinguished:

Stop

There is no data traffic between DPM1 and the DP slaves.

Clear

The DPM1 reads the input information of the DP slaves and maintains the safe status of the DP slaves' output.

Operate

The DPM1 has entered the data transfer phase. In case of a cyclical data traffic, the input is read by the DP slaves while the output is transferred to the DP slaves.

By means of a multicast command, the DPM1 cyclically sends its local status to the assigned DP slaves within a configurable time interval.

After an error has occurred during the data transfer phase of the DPM1, like for example, the failure of a DP slave, the response of the system is determined by the operating parameter "Auto Clear".

If this parameter has been set to true, the DPM1 will set the output of all the respective DP slaves to the safe status, as soon as a DP slave is no longer available for user data communication. Afterwards, the DPM1 changes to the clear status.

If this parameter is = false, the DPM1 remains, even if an error occurs, in the operate status, and the user can determine the response of the system at his own discretion.

3.7 Cyclical Data Transfer between DPM1 and the DP Slaves

The data traffic between the DPM1 and the respective DP slaves is automatically handled by the DPM1 in a fixed, recurring order. When configuring the bus system, the user assigns a DP slave to the DPM1. In addition, the slaves to be included in- or excluded from the user data communication are defined.

The data traffic between the DPM1 and the DP slaves is subdivided in parameterisation, configuration, and data transfer phases. Before including a DP slave in the data transfer phase, the DPM1 checks during the parameterisation and configuration phase, whether the planned set configuration corresponds to the actual configuration of the device. For this check, the device type, the information on the format and the length as well as the number of input and output lines have to be correct. The user thus obtains a reliable protection against parameterisation errors. In addition to the user communication, which is automatically executed by the DPM1, the user may request the new parameterisation data to be sent to the DP slaves.

User data communication for PROFIBUS DP

3.8 Data Traffic between DPM1 and Project Planning Devices

In addition to the functions between DP master and DP slaves, master-master communication functions are available. They support the project planning and diagnostic devices in projecting the system via the bus.

Besides the upload and download functions, the master-master functions offer the opportunity to switch the user data transfer between the DPM1 and the single DP slaves dynamically on or off as well as to modify the operating status of the DPM1.

Function	Meaning	DPM1	DPM2
Get_master_Diag	Reads the diagnostic data of the DPM1 or the collective diagnosis of the DP slaves.	М	0
Download / Upload Group (Start_Seq, Down- / Upload, End_Seq)	Reads or writes the entire configuration data of a DPM1 and of the respective DP slaves.	0	0
Act_Para_Brct	Activates the bus parameters for all operating DPM1 devices.	0	0
Act_Param	Activates parameters or modifies the operating status of the operating DPM1 device.	0	0

M: mandatory, O: optional

Functional overview for the master-master functions for PROFIBUS DP

3.9 Sync Mode

In addition to the station-related user data communication being automatically handled by the DPM1, the masters may send control commands to a single slave, a group of slaves or all slaves at the same time. These control commands are transferred as multicast. It is only by means of this multicast that the sync and freeze operating modes for the event-controlled synchronisation of the DP slaves have been enabled.

The **sync mode** is started by the slaves, as soon as they receive a sync command from the respective master. The output lines of the addressed slaves will then be frozen in their current state. The output data will be stored at the slaves during the following user data transfers; the state of the output lines, however, will remain unchanged. Unless the next sync command has been received, the stored output data will not be connected to the output lines. By selecting unsync, the sync mode is terminated.

3.10 Protective Mechanisms

For reasons of safety, it is necessary to equip PROFIBUS DP with powerful protective functions against false parameterisation or failure of the transmission equipment. For this purpose, monitoring mechanisms at the DP master and the DP slave have been realised, taking the form of time -out circuits. The monitoring interval is determined during project planning.

At the DP master

The DPM1 controls the data traffic of the slaves by means of the Data_Control_Timer. For each slave, a special timer is used. The time-out circuit will respond, if no proper user data transfer occurs during a control interval. In this case, the user will be informed. If the automatic response to an error (Auto_Clear = True) has been released, the DPM1 will quit the operate status, switch the output lines of the respective slaves to the safe status and change to the clear status.

At the DP slave

In order to recognise errors by the master or transmission errors, the slave executes the response control. If there is no data traffic during the response control interval, the slave will automatically switch the output lines to the safe status.

When operating in multimaster systems, a supplementary access protection for the I/O lines of the slaves will be necessary. This is to make sure that direct access can only be gained by an authorised master. For all the other masters, the slaves will provide an I/O map which can be also be read without access authorisation.

3.11 Communication Interface

The communication interface corresponds to the PROFIBUS DP class 2 encoder profile.

Within this interface the class 1 functions are included. The manufacturer specific functions will be described separately in the following.

4 Overview Encoder Functions

Function	Octet no.	Data type	Designation	Class
Chk_Cfg	1	Octet string	Configuration data exchange	1
Set_Prm	1	Octet	Station status	1
Set_Prm	2 - 3	16 bit	Response check time (T _{WD})	1
Set_Prm	4	Octet	Min. Station Delay Responder (min. T _{SDR})	1
Set_Prm	5 - 6	16 bit	PNO identity number	1
Set_Prm	7	Octet	Group identity	1
Set_Prm	8	Octet	Special functions	2
Set_Prm	9	Octet string	Operating parameters	1
Set_Prm	10 - 13	32 bit	Measuring steps per revolution	2
Set_Prm	14 - 17	32 bit	Total number of measuring steps	2
Data_Exchange	1 - 8	16, 32 or 64 bit	Position value, preset	1/2
slave_Diag	1	Octet string	Station status 1	1
slave_Diag	2	Octet string	Station status 2	1
slave_Diag	3	Octet string	Stations status 3	1
slave_Diag	4	Octet string	Diagnosis master Add	1
slave_Diag	5 - 6	Octet string	PNO identity number	1
slave_Diag	7	Octet string	Extended diagnostic header	1
slave_Diag	8	Octet string	Alarm messages	1
slave_Diag	9	Octet string	Operating status	1
slave_Diag	10	Octet string	Encoder type	1
slave_Diag	11 - 14	32 bit	Phys. Single turn resolution	1
slave_Diag	15, 16	16 bit	Phys. Multi turn resolution	1
slave_Diag	17	Octet string	Additional alarm messages	2
slave_Diag	18, 19	Octet string	Supported alarm messages	2
slave_Diag	20, 21	Octet string	Warnings	2
slave_Diag	22, 23	Octet string	Supported warnings	2
slave_Diag	24, 25	Octet string	Profile version	2
slave_Diag	26, 27	Octet string	Software version	2
slave_Diag	28 - 31	32 bit	Operating time	2
slave_Diag	32 - 35	32 bit, signed	Offset value	2
slave_Diag	40 - 43	32 bit	Measuring steps per revolution	2
slave_Diag	44 - 47	32 bit	Total measuring range in measuring steps	2
slave_Diag	48 - 57	ASCII string	Serial number	2
RD_Inp	1 - 4	32 bit	Position value	1

5 Configuration (DDLM_Chk_Cfg)

By means of this routine, the DP master determines the number of bytes for the data exchange.

Octet	1
Bit	7 - 0
Data	D1h = 2 words of input data (standard configuration, Class 1)
	F1h = 2 words of input data, output data (standard configuration, Class 2)
	D0h = 1 word of input data (optional configuration, Class 1)
	F0h = 1 word of input data, output data (optional configuration, Class 2)
	D3h = 4 words of input data (manufacturer configuration)
	F3h = 4 words of input data, 4 words of output data (manufacturer specific configuration)

6 Operating parameters (DDLM_Set_Prm)

6.1 Overview

Parameter	Data type	Parameter Octet number	Class	GSD file standard value
Station status	Octet string	1	DIN 19245-3	88h
Response check time (T_{WD})	16 bit	2 - 3	DIN 19245-3	340 ms
Min. station delay responder (min. T _{SDR})	Octet string	4	DIN 19245-3	11
PNO identity number	16 bit	5 - 6	DIN 19245-3	00B7h
Group identity	Octet string	7	DIN 19245-3	0
Suppress operation time counter	Bit 0	8	2	0
Diagnose Length Class1	Bit 1	8	2	0
Do not save Preset	Bit 2	8	2	0
Code sequence	Bit 0	9	1	0 = ascending for revolution cw
Class 2 functionality	Bit 1	9	2	1 = On
Maintenance diagnosis	Bit 2	9	Optional	0 = Off
Scaling function	Bit 3	9	2	1 = On
Sampling	Bit 7	9	2	1 ms
Measuring steps per revolution	32 bit	10 - 13	2	4096*
Total number of measuring steps	32 bit	14 - 17	2	2 ²⁶ *

* Entry must be set to a value less than or equal to the maximum possible resolution of your device

6.2 Definition of the Special Function Parameters

DDLM_Set_Prm

Octet	8
Bit	2-0
Data	$2^2 - 2^0$
	Special function parameters

Bit	Designation	= 0	= 1
0	Suppress operation time counter	Inactive	Active
1	Diagnose Length Class1	Inactive	Active
2	Do not save Preset	Inactive	Active

6.2.1 Suppress Operation Time Counter

The internal operation time counter is incremented at intervals of 6 minutes and changed in the diagnosis. As a result, the master has to "collect" the diagnostic message, which is frequently

not desired in time-critical control processes. By setting this bit the internal time counter is still incremented but not changed in the diagnosis.

Standard setting: Bit = 0 - Output of the operation time counter.

Diagnose Length Class1

In smaller control systems, the large volume of diagnostic data in Class 2 may be a problem (buffer size). Therefore, this bit can be set to reduce the diagnose length to the length defined in Class 1.

Standard setting: Bit = 0 – Diagnose Length Class2 (long) (according to GSD file)

6.2.2 Do not store Preset

Whenever a preset is performed the preset value is stored in the internal EEPROM. Therefore, this value is saved in the event of a power failure. The component has been designed for a capacity of approx. 1 million write actions, which is usually sufficient.

However, there are applications in which the preset value has to be set very often, whereas data protection does not play an important role. This bit is used to suppress the saving of the preset value into the EEPROM, i.e. the preset value will be taken on but not

St (A

Standard setting: Bit = 0 - Save preset value. (According to GSD file)

6.3 Definition of the Operating Parameters

Octet	9
Bit	7 - 0
Data	2 ⁷ - 2 ⁰
	Operating Parameters

DDLM_Set_Prm

Bit	Designation	= 0	= 1
0	Code sequence	ascending code sequence for clockwise revolution	ascending code sequence for counterclockwise revolution
1	Class 2 functionality	inactive	active
2	Maintenance diagnosis	inactive	active
3	Scaling function	inactive	active, sets scaling parameters to the transferred values
7	Sampling	1 ms	10 ms

6.3.1 Code Sequence

The code sequence defines the counter direction, in which the position code is issued in ascending order (clockwise (cw) or counterclockwise (ccw), viewed from the shaft). The Code sequence is determined by the code sequence bit in the operating parameters.

Standard setting: bit = 0 - ascending code sequence for clockwise revolution (according to GSD file)

6.3.2 Class 2 Functionality

This bit activates the "class 2 functionality".

The DP master has to set the bit to $_{n1}$ = active", in order to be able to use the "class 2 functionality". If the "class 2 functionality" is inactive, the encoder operates like a class 1 encoder.

Standard setting: bit = 1 - Class 2 functionality is switched on (according to GSD file).

6.3.3 Maintenance Diagnosis

By means of this diagnosis, the hardware of the encoder may be checked (at standstill). The diagnosis is activated via the respective bit within the operating parameters. Occurring errors are indicated by the alarm bit of the diagnostic function (see alarm).

Standard setting: bit = 0 - Diagnosis switched off (according to GSD file) .

6.3.4 Scaling Function

By means of the scaling function, the internal position value of the encoder is calculated by the encoder software to modify the resolution of the shaft encoder. The scaling parameters are: "Measuring steps per revolution" and "Total number of measuring steps".

1

1

For the scaling function bit = 0, the scaling function is not activated.

To activate the scaling, the scaling function bit as well as the "class 2 functionality" bit have to be set (standard setting according to GSD file).

6.3.5 Sampling

By means of this bit, the sampling cycle time of the internal encoder timer is set

bit=0 (standard setting): Encoder disk is sampled every 1 ms

bit=1: Encoder disk is sampled every 10 ms (provides higher values for speed and acceleration with a lower rotational speed)

6.4 Measuring Steps per Revolution (Resolution)

This parameter sets the desired resolution (\leq physical resolution) per revolution. The encoder internally calculates the respective scaling factor.

The total number of measuring steps is set by octet 14 - 17.

The resulting scaling factor SCF (by which the physical value of position is multiplied) can be calculated according to the following equation:

SCF = Measuring Steps per Revolution (Octet 10 - 13) phys.Resolution single turn EINBETTEN

Octet	10	11	12	13
Bit	31 - 24	23 - 16	15 - 8	7 - 0
Data	2 ³¹ - 2 ²⁴	2 ²³ - 2 ¹⁶	2 ¹⁵ - 2 ⁸	2 ⁷ - 2 ⁰
	Measuring steps per revolution			

DDLM_Set_Prm

Value range: 0 ... (max. physical resolution per revolution)

Standard value = 4096 (12 bit)

Example:

RA58-P/1213 (Resolution = 13 bit per revolution): Data contents = 20 00h

Octet 10	Octet 11	Octet 12	Octet 13
00h	00h	20h	00

6.5 Total Number of Measuring Steps

This parameter sets the total number of measuring steps. After the given number of measuring steps the encoder is reset to zero.

The measuring steps per revolution (resolution) are set by octet 10 - 13.

If the encoder is used in the continuous mode, the "total number of measuring steps must not exceed" only $2^x \cdot$ "measuring steps per revolution" (with x=1 ... 12).

Octet	14	15	16	17
Bit	31 - 24	23 - 16	15 - 8	7 - 0
Data	2 ³¹ - 2 ²⁴	2 ²³ - 2 ¹⁶	2 ¹⁵ - 2 ⁸	2 ⁷ - 2 ⁰
	Total number of measuring steps			

DDLM_Set_Prm

1

Value range: 0 ... (max. physical total resolution)

Standard value = 2^{26} (26 bit)

Example:

RA58-P/1213 (Total resolution= 13 bit per revolution • 12 bit revolutions): Data contents = 2 00 00 00h

Octet 14	Octet 15	Octet 16	Octet 17
02h	00h	00h	00h

7 Data exchange (DDLM_Data_Exchange)

The data exchange is configured by means of the DDLM_Chk_Cfg routine (see Chapter 5 System Configuration and Device Types).

Position value

The encoder input data amounting to a length of 32 bit (depending on the individual manufacturer, 64 bit are also possible) are used for the position value, the speed, and the acceleration. Optionally, the encoder also supports position values with a length of 16 bit. The value is positioned on the right side of the data field.

Preset function

The preset function supports the adaptation of the encoder zero point to the mechanical zero point of the system. The preset function sets the current position value of the encoder to the preset value. In the data_exchange function, the preset value will be stored as default value. The preset function is used after the scaling, i. e. the preset value is indicated in programmed measuring steps.

The MSB of the preset value controls the preset function in the following way:

Normal operating status:	MSB=0 (bit 31 , optionally bit 15 or bit 63 respectively) Preset value will not be taken on.
Preset-Mode:	MSB=1 /bit 31 (optionally bit 15 or bit 63, respectively) With MSB=1 the encoder takes on the transferred value (bit 0 - 30) as preset value in the binary code.

The encoder reads the current position value and calculates an offset value from the preset value and the read-in position value. The position value is replaced by the preset value. If the default value and the preset value are identical, the preset value may be terminated and the MSB can be reset to zero by the master. By means of the diagnostic function, the offset value can be read. The value will be reloaded after a mains failure and each restart.

The preset function may only be used if the encoder is at standstill.

The scaling parameters have to be transferred beforehand (only if the scaling is to be set).

T

7.1 Standard Configuration:

Configuration data:

- Class 1: D1h (2 words of input data)
- Class 2: F1h (2 words of input data, 2 words of output data for preset value)

Octet	1	2	3	4
Bit	31 - 24	23 - 16	15 - 8	7 - 0
Data	2 ³¹ - 2 ²⁴	2 ²³ - 2 ¹⁶	2 ¹⁵ - 2 ⁸	2 ⁷ - 2 ⁰
	Data_Exchange - 32 bits			

Format preset value

Octet	1		2	3	4
Bit	31	30 - 24	23 - 16	15 - 8	7 - 0
Data	0 / 1	2 ³⁰ - 2 ²⁴	2 ²³ - 2 ¹⁶	2 ¹⁵ - 2 ⁸	2 ⁷ - 2 ⁰
	Preset control*	Preset value - max. 31 bits			

* The preset value will only be taken on if the bit 31 is set. If the encoder sends back the preset value, the master will be able to reset the bit 31.

7.2 Optional Configuration

Configuration data:

- Class 1: D0h (1 word of input data)
- Class 2: F0h (1 word of input data, 1 word of output data for preset value)

Octet	1	2	
Bit	15 - 8	7 - 0	
Data	2 ¹⁵ - 2 ⁸	2 ⁷ - 2 ⁰	
	Data_Exchange - 16 bits		

Format preset value

Octet	1		2
Bit	15 14 - 8		7 - 0
Data	0 / 1	2 ¹⁴ - 2 ⁸	2 ⁷ - 2 ⁰
	Preset control*	Preset value - max. 15 bits	

* The preset value will only be taken on if the bit 31 is set. If the encoder sends back the preset value, the master will be able to reset the bit 31.

7.3 Manufacturer-Specific Configuration with Speed and Acceleration

Configuration Data:

D3h (4 words of input data: 2 words for position, 1 word for speed, 1 word for acceleration)
F3h (4 words of input data: 2 words for position, 1 word for speed, 1 word for acceleration; 4 words of output data for preset value)

Octet	1, 2	3, 4	5, 6	7, 8
Bit	43 - 48	47 - 32	31 - 16	15 - 0
Data	2 ⁶³ - 2 ⁴⁸	2 ⁴⁷ - 2 ³²	2 ³¹ - 2 ¹⁶	2 ¹⁵ - 2 ⁰
	Posi	tion	Speed	Acceleration

Format preset value

Octet	1,	2	3, 4	5, 6	7, 8
Bit	63	62 - 48	47 - 32	31 - 16	15 - 0
Data	0/1	2 ⁶² - 2 ⁴⁸	2 ⁴⁷ - 2 ³²	2 ³¹ - 2 ¹⁶	2 ¹⁵ - 2 ⁰
	Preset control*	Pres	et value		-

The preset value will only be taken on if the bit 31 is set. If the encoder sends back the preset value, the master is able to reset the bit 31.

The **speed** is indicated independently of the physical resolution in:

 $\frac{2^{14}}{60000} \bullet T \bullet \frac{U}{\min}$ with T=1 or 10 (Sampling; see Operating parameters on page 19).

The speed is indicated as a 16-bit two's complement. Negative values indicate a sense of rotation that is against the programmed ascending sense of rotation. The output value is the average value of the last 8 speed values.

Acceleration: The difference between 5 subsequent speed samples will be summed up.

8	Diagnostic Function	ns (DDLM_slave_	_Diag)
---	----------------------------	-----------------	--------

Diagnostic function	Data type	Diagnosis Octet number	Class
Station status 1	Octet string	1	DIN 19245-3
Station status 2	Octet string	2	DIN 19245-3
Station status 3	Octet string	3	DIN 19245-3
Diagnosis master Add	Octet string	4	DIN 19245-3
PNO identity number	Octet string	5 - 6	DIN 19245-3
Extended diagnostic header	Octet string	7	1
Alarm message	Octet string	8	1
Operating status	Octet string	9	1
Shaft encoder type	Octet string	10	1
Phys. resolution single turn	32 bit	11 - 14	1
Phys. resolution multi turn	16 bit	15, 16	1
Additional alarm messages	Octet string	17	2
Supported alarm messages	Octet string	18, 19	2
Warnings	Octet string	20, 21	2
Supported warnings	Octet string	22, 23	2
Profile version	Octet string	24, 25	2
Software version	Octet string	26, 27	2
Operating time	Octet string	28 - 31	2
Offset value	signed 32 bit	32 - 35	2
Measuring steps per revolution	32 bit	40 - 43	2
Total number of measuring steps	32 bit	44 - 47	2
Serial number	ASCII string	48 - 57	2

8.1 Diagnostic Functions Class 1

The octets 1 - 6 are specified in the DP standard DIN 19245.

The length of the diagnostic information class 1 is 16 byte, for Class 2, it is 57 byte.

8.1.1 Diagnostic Header

The header byte indicates the length of the diagnostic message including the header byte. The format of the value is hexadecimal.

DD	LM	slav	e Di	iaq
	_			<u> </u>

Octet		7	
Bit	7	6	5 - 0
Data	0	0	xxh
	Restricted to 00 for the specific diagnost	e display of device tic messages	Length including header
	Ex	Extended diagnostic header	

8.1.2 Alarm Messages

In the case of a malfunction in the shaft encoder, which may lead to false position values, an alarm message will be sent. The alarm type is defined in Octet 8 of the diagnostic function within the DDLM_slave_Diag. dialogue.

Additional class 2 alarm messages will be displayed in Octet 17 of the diagnostic function. In the case of an alarm message the bits Ext_Diag and Stat_Diag are both set to 1 until

- the alarm message has been deleted and
- the encoder recognises a precise position value.

Alarm messages will be deleted if the functions have been restored according to the specifications and if the position value is correct.

The diagnostic function "supported alarm messages" (Octet 18 - 19) provides the information on which alarm messages are supported by the encoder.

Octet	8
Bit	7 - 0
	Alarm messages

Bit	Designation	= 0	= 1
0	Position error	no	yes
1	Error voltage supply	no	yes
2	Current too high	no	yes
3	Maintenance diagnosis	ОК	error
4	Storage error	no	yes

8.1.3 Operating Status

Octet 9 of the diagnostic functions provides information on internal parameters of the encoder. The class 2 encoder sets the bit to "class 2 functionality" in order to signal the DP master that the class 2 functions are entirely supported.

The DP master has to set the bit to "1 = active" in "DDLM_Set_Prm", to make the "class 2 functionality available".

The bit for the status of the scaling function will be set if the scaling function is activated and the resolution is controlled by the scaling parameters.

Octet	9
Bit	7 - 0
	Operating status

Bit	Designation	= 0	= 1
0	Status code sequence	Ascending code sequence for clockwise rotation	Ascending sequence for counterclockwise rotation
1	Class 2 functionality	inactive	active
2	Maintenance diagnosis	not supported	supported
3	Scaling function	inactive	active
7	Sampling	1 ms	10 ms

8.1.4 Shaft Encoder Type

The shaft encoder type is contained as a hexadecimal code in Octet 10 of the diagnostic function.

DDLM_slave_Diag

Octet	10
Code	00/01
	Encoder type

Code	Designation
00	Absolute shaft encoder, single turn
01	Absolute shaft encoder, multiturn

8.1.5 Physical Singleturn Resolution

The diagnostic octets 11 through 14 contain the number of measuring steps per revolution.

DDLM_slave_Diag

Octet	11	12	13	14
Bit	31 - 24	23 - 16	15 - 8	7 - 0
Data	2 ³¹ - 2 ²⁴	2 ²³ - 2 ¹⁶	2 ¹⁵ - 2 ⁸	2 ⁷ - 2 ⁰
	Singleturn resolution			

8.1.6 Physical Multiturn Resolution

The diagnostic octets 15 and 16 contain the number of revolutions. For a multiturn shaft encoder, the measuring range results from the number of revolutions and the single turn resolution according to the equation:

Measuring range = Number of revolutions x singleturn resolution.

Octet	15	16
Bit	15 - 8	7 - 0
	Number of revolutions	

8.2 Diagnostic Functions Class 2

The length of the class 2 diagnostic information including header amounts to 51 byte (33h).

8.2.1 Additional Alarm Messages

Diagnostic octet 17 is reserved for further alarm messages which, however, have not yet been defined in the profile.

DDLM_slave_Diag

Octet	17
Bit	7 - 0
	Additional alarm messages (currently not assigned)

8.2.2 Supported Alarm messages

The diagnostic octets 18 and 19 contain information on the supported alarm messages.

The alarm messages are displayed by means of octet 8.

Octet	18	19	
Bit	15 - 8	7 - 0	
	Supported alarm messages		

Bit	Designation	= 0 (not supported)	
		= 1 (supported)	
0	Position error	1	
1	Error voltage supply	0	
2	Current too high	0	
3	Maintenance diagnosis	1	
4	Memory error	0	

8.2.3 Warnings

Warnings signal that some tolerances for certain internal parameters have been exceeded. In contrast to the alarm messages, they do not indicate false position values.

The diagnostic octets 20 and 21 contain the warnings.

In case of a warning, the EXT_Diag bit is set to 1, until the warning has been deleted.

Warnings are deleted after the diagnostic message has been read. If the tolerance is still being exceeded, the message will come up again.

The warning "operating time limit" (bit 4) only turns up again after a restart.

The diagnostic function "supported warnings" (Octet 22-23) provides the information on which warnings are supported by the encoder.

DDLM_slave_Diag

1

Octet	20	21
Bit	15 - 8	7 - 0
	Warnings	

Bit	Designation	0	1
0	Frequency exceeded	no	yes
1	Temperature exceeded	no	yes
2	LED Reserve	not attained	attained
3	CPU Watchdog	ОК	reset executed
4	Operating time warning (100.000 h)	not attained	attained
5	Battery charge	ОК	too low
6	Reference point	attained	not attained

8.2.4 Supported Warnings

The diagnostic octets 22 and 23 contain information on the supported warnings.

The warnings are indicated by means of octet 20-21.

DDLM_slave_Diag

i

Octet	22	23
Bit	15 - 8	7 - 0
	Supported warnings	

Bit	Designation	= 0 (not supported)
		= 1 (supported)
0	Frequency	1
1	Temperature	0
2	LED Reserve	0
3	CPU Watchdog	1
4	Operating time warning (100.000 h)	1
5	Battery charge	0
6	Point of reference	0

8.2.5 Profile Version

The diagnostic octets 24 and 25 contain the DP encoder profile version. The octets are subdivided into a revision number and an index.

Example:

Profile versior	า:	1.10	
Octet no.:	24	25	
Binary code:	0000 0001	0001	0000
Hex.:	01	10	

Octet	24	25
Bit	15 - 8	7 - 0
Data	$2^7 - 2^0$	2 ⁷ - 2 ⁰
	Revision number	Index
	Profile version	

8.2.6 Software Version

The diagnostic octets 26 and 27 contain information on the software version of the encoder. The octets are subdivided into a revision number and an index.

example:		
Software version:	1.00	
Octet no.:	26	27
Binary code:	0000 0001	0000 0000
Hex.:	01	00

DDLM_slave_Diag

Octet	26	27	
Bit	15 - 8	7 - 0	
Data	$2^7 - 2^0$	2 ⁷ - 2 ⁰	
	Revision number	Index	
	Software version		

8.2.7 Operating Time

The operating time display stores the operating time of the shaft encoder in operating hours. The operating time is stored every 6 minutes, unless there is no breakdown in the voltage supply of the shaft encoder. The operating time is indicated as unsigned binary value, the unit being 0.1 hours. The fixed time limit is 100,000 hours.

As the internal operation time counter is incremented the shaft encoder generates a diagnostic message every 6 minutes. If this is not desired (e.g. during time-critical applications), set the GSD parameter **"Suppress time counter in diag"** to "Yes" to suppress this diagnostic message.

DDLM_slave_Diag

Octet	28	29	30	31	
Bit	31 - 24	23 - 16	15 - 8	7 - 0	
Data	2 ³¹ - 2 ²⁴	2 ²³ - 2 ¹⁶	2 ¹⁵ - 2 ⁸	2 ⁷ - 2 ⁰	
	Operating time				

8.2.8 Offset Value

The offset value is calculated in the preset function and shifts the position value by the calculated offset value. The offset value will be stored and may be read out from the diagnostic octets 32 to 35. The data type of the offset value is 32 bit signed in the binary code. The value range is valid for the set measuring range (total number of measuring steps).

Octet	32	33	34	35		
Bit	31 - 24	23 - 16	15 - 8	7 - 0		
Data	2 ³¹ - 2 ²⁴	2 ²³ - 2 ¹⁶	2 ¹⁵ - 2 ⁸	2 ⁷ - 2 ⁰		
	Offset Value					

8.2.9 Measuring Steps per Revolution

The scaling parameters are set in the DDLM_Set_Prm (Octet 9-17) dialogue.
 The parameters are stored and may be read out from the diagnostic octets 40

The parameters are stored and may be read out from the diagnostic octets 40 through 47. The set resolution of the encoder is indicated by the parameters "measuring steps per revolution" and "total number of measuring steps".

The data type for both values is 32 bit, unsigned.

DDLM_slave_Diag

Octet	40	41	42	43	
Bit	31 - 24	23 - 16	15 - 8	7 - 0	
Data	$2^{31} - 2^{24}$	2 ²³ - 2 ¹⁶	2 ¹⁵ - 2 ⁸	2 ⁷ - 2 ⁰	
	Measuring steps per revolution				

8.2.10 Total Number of Measuring Steps

The scaling parameters are set in the DDLM_Set_Prm (Octet 9-17) dialogue. The parameters are stored and may be read out from the diagnostic octets 40 through 47. The set resolution of the encoder is indicated by the parameters "measuring steps per revolution" and "total number of measuring steps".

DDLM_slave_Diag

1

Octet	44	45	46	47		
Bit	31 - 24	23 - 16	15 - 8	7 - 0		
Data	2 ³¹ - 2 ²⁴	2 ²³ - 2 ¹⁶	2 ¹⁵ - 2 ⁸	2 ⁷ - 2 ⁰		
	Total number of measuring steps					

8.2.11 Serial Number Encoder

The diagnostic octets 48 through 57 contain the serial number of the encoder as ASCII string with 10 characters.

Octet	48 - 57
Bit	79 - 0
Data	ASCII
	Serial number

Bus Connection

9.1 Bus Connection of the Encoder

The data is transferred according to RS-485. A bus line system meeting the requirements of the line type A specification of the EN 50170 standard is to be used.

The line parameters are as follows

Parameter	Line type A
Surge impedance in Ω	135 165 at a frequency of (3 20 MHz)
Working capacitance (pF/m)	< 30
Loop resistance (Ω/km)	< 110
Core diameter (mm)	> 0.64
Core-cross section (mm ²)	> 0.34

Only by means of this cable can the following linear expansions be obtained:

Transmission speed in kbit/s	9.6	19.2	45.45	93.75	187.5	500	1500	3000	6000	12000
Segment length in m	1200	1200	1200	1200	1000	400	200	100	100	100

The bus structure permits to connect and disconnect stations without reactions or to start up the system step by step.

The transmission speed can be selected for the range of 9.6 kbits/s through 12 Mbits/s. The speed is selected at the bus for all devices.

At the beginning and at the end of each segment, the DP bus has to be terminated by an active bus termination! For an interference-free operation, the voltage supply of both bus terminations has to be ensured.

The screen has to be connected to ground on both sides.. The power supply lines should also be entirely screened. If this is impossible, appropriate filter methods should be applied

For data rates of more than 500 kbit/s spur lines are to be avoided!

9.2 Connection Types

Two connection types are available for DP encoders:

- 1. Bus terminal box
- 2. Connector 2-fold, 12 poles

9.2.1 Connection Type BusTerminal Box

- \Rightarrow Loosen the screws and draw off the bus terminal box from the encoder.
- ⇒ Lead the incoming bus cables through the middle screw connection (PG type) and connect it to the terminals A, B according to the inscription. Place-on the cable shield/screen at the PG-type connector (see graph).
- ⇒ In case there are no other devices following within the same bus phase: Activate the bus termination resistor in the bus terminal box (DIP switch 1 and 2 from S2 to "ON")!
- ⇒ In case there are other devices following within the same bus phase: Lead the continuing cable through the screw connection which is on your right when opening the bus terminal box and connect it to the terminals A, B according to the inscription. Place-on the cable shield at the PG-type connector (see graph).
- ⇒ Lead the encoder voltage supply through the screw connection which is on your left when opening the bus terminal box and connect it to U_B and 0 V. Place-on the cable shield at the PG-type connector (see graph).
- \Rightarrow Attach the bus terminal box to the encoder and tighten the screws.

Connection diagram

PG type connector

Reversed shield establishes contact to the housing

EINBETTEN

9.2.2 Connection Type Connector 2-fold

Since Line type A – according to specification – only includes the data lines, we recommend the following mode of connection:

- ⇒ Bus connection by spur cable to the encoder input (IN) attention: Observe the maximum stub cable length!
- \Rightarrow Feed supply voltage via the second connection (OUT).

Maximum current intensity: 2 A via pin 7 and 8! Recommended external fuse for the entire bus supply voltage: T 2 A

Connection assignment:

Pin	IN (Pins)	OUT (liner)	Description
1		GND1	Data Ground (M5V)*
2	А	А	Receive/Transmit Data-Negative (A)
3			
4	В	В	Receive/Transmit Data-Positive (B)
5			
6		VCC1	+5 V Signal output (P5V)*
7	1030 VDC	1030 VDC	Supply voltage +U _B (P24)
8	0 V	0 V	Supply voltage Ground (M24)
9			
10			
11			
12			
Screen	Screen	Screen	Screen connected to encoder housing

* can be used for power supply of an external bus termination resistor 356041

10 Control Elements

10.1 Setting the device address

By means of 7 DIP switches, the device address is set.

• For the version with connector 2-fold, the DIP switch will be accessible after having removed a rubber plug in the encoder cover (at the encoder's back).

The rubber plug must not be damaged while it is removed or inserted! Damaged rubber plugs must be replaced (order no. 2543067) as otherwise the IP protection will no longer be guaranteed.

Press the rubber plug down for several times after inserting to ensure that it is firmly seated in the borehole.

- For the version with bus terminal box, the DIP switches will be accessible after the bus terminal box has been drawn off.
- The DIP switches will only be evaluated when running up the encoder (after Reset or Power up). A modification of the switch position has no effect until the next Reset/ Power up

The modification will only be accepted if the position of the DIP switches has been modified since the previous Reset. Otherwise the address which has been stored in the EEPROM and which has been possibly programmed with a DPM2 device (class 2 master) via the bus will be preserved.

Switch to ON position = 1

Only the DIP switches 1 through 7 (8 without any assigned function) are used. The address of the device must only be set within a range of 1 ... 125 (126 is reserved as default value for devices without DIP switches).

Standard setting ex works: device address 32 has been stored into the EEPROM.
 If a new address is to be set, the DIP switches must be modified correspondingly and the encoder must be run-up (Reset or Power up) again.
 Later, the device address may also be reprogrammed by a DPM2 device (Class 2 master) via the bus.

10.2 Activating the bus terminating resistor With bus terminal box:

 \Rightarrow Set both S2 DIP switches to the "ON" position if the encoder is the last device in line.

With connector 2-fold:

Terminator plugs can be used to terminate the bus (e. g. Siemens: item no. 6ES5 755-2CA11) 40

11 Configuration and Parameterisation of the encoder

• As an aid for the use of standard Profibus-DP tools, there is a so-called GSD file (electronic data sheet) with device master information. It is available on diskette with the item no. 1 543 062, or by download from our Internet homepage. The GSD file "HENx00B7.GSD" contains the available encoder parameters.

The GSD file is available in two versions for use with the different configuration tools or SPS versions:

Hen100b7.gsd for use with configuration tools supporting the 'Ext user parameters' (e.g. COM_Profibus or Step 7 by Siemens). This allows clear selection and parameterisation. Hen. 200b7.gsd must be used with configuration tools that do not support the 'Ext user parameters'. In this case, parameters must be written as hexadecimal values.

The bitmap files are also used by the configuration tools in order to display the shaft encoder as an icon.

11.1 Configuration example with Step 7 (Siemens):

1. Read-in the GSD files (necessary only to include these files in the hardware catalogue for the first time)

2. Include the shaft encoder in the Profibus (Precondition: Master must be configured)

- ⇒ Select RA58-P from the hardware catalogue window: Path: Profibus DP - Additional Field Devices - Encoders - RA58-P and append it to the Profibus in the upper station box (1).
- \Rightarrow Click the desired module and drag it to the lower field of station properties (2).

3. Shaft encoder parameterisation

General Parameter Assignment	Value		⇒ Doubleclick the shaft encoder icon
Always class 1 diag length Suppress store offset to EEPROM Positive rotation	No No clockwise		to open the slave property box.
Llass 2 functionality Commis. diagnostics Scaling function Sampling rate (velocity only) Steps per turn	active not active active 1 ms 4096	Change Value	⇒ To change a parameter value, doubleclick a
Total measuring range(units)hi Total measuring range(units)lo	1024 0	Enter a value from 1 to 16384. Value: 1000	value and enter the new value into the box.
		OK Cancel Help	
<u>د</u>	<u>H</u> ex Paramete	r Change Value	

4. Adjusting the S7 program modules

The following OB's (functions) should be embedded as necessary:

OB82 (Diagnosis):

To lockout the shaft encoder diagnosis, which is initiated by the incrementing of the encoder's operation timer counter (every 6 minutes) - please also refer to Section 6.2.1.

OB86 (Station error):

The SPS goes to the Stop position in the event of an error or failure of the shaft encoder. If this is not desired, then OB86 must be embedded.

SFC14 (Consistently read data >32 bit)

Must be embedded if the shaft encoder module "Spec1: 64 Bit Inp (POS,VEL,AC)" or "Spec2: 64 Bit I/O (P,V,A/PRES)" is used (as the standard setting of S7 usually only allows consistent reading of max. 32 bit data.

SFC15 (Consistently write data >32 bit)

Must be embedded if the shaft encoder module "Spec2: 64 Bit I/O (P,V,A/PRES)" is used and a preset value is to be written into the shaft encoder.

5. Completion

You have now completed the configuration and parameterisation of the shaft encoder and you only have to save your new project now.

11.2 Summary of the GSD parameters:

A detailed description is given in Section 6 - Operating Parameters.REFFORMATVERBINDEN

Suppress time counter in diag: The "Yes" option prevents the shaft encoder from generating a diagnostic message every 6 minutes (which is usually the case as the internal operating time counter is incremented). This option suppresses the diagnostic message, which is especially useful for time-critical applications.

Always class 1 diag length: The "Yes" option shortens the data length of the Class 2 diagnosis. This setting should be used if your control system does not support the full Class 2 length (insufficient input buffer), or if you wish to reduce the read-in time of the diagnostic data.

Suppress store offset to EEPROM: Use the "Yes" setting to suppress the storage of a preset/offset value into the shaft encoder EEPROM. In this way it will be possible to transfer a preset value for several times without restricting the EEPROM life (e.g. cyclic shaft encoder synchronisation during rotary table applications).

In the event of an operating voltage failure, the programmed preset value that resides in the shaft encoder RAM will be lost in this mode!

Positive rotation: The "clockwise" option will set the counting direction of the shaft encoder to ascending values (with view onto the encoder shaft).

Class 2 functionality: The "active" option will enable the "Class 2 Functionality".

Commis. diagnostics: The "active" option will enable the additional hardware testing function of the shaft encoder.

Scaling function: Use the "active" option to release the scaling function.

Sampling rate (velocity only): This bit sets the scanning cycle time of the internal encoder timer to 1 ms or 10 ms. (At 10 ms, the shaft encoder will return higher velocity and acceleration at a lower rotational speed)

Steps per turn: The number of steps per turn (resolution) can be adjusted within the range of 1 to the max. possible physical resolution.

Total measuring range (units) hi / lo: Enter the total number of measuring steps as the upper limit value. Thereafter, the shaft encoder will return to zero. The four bytes of the value are subdivided into a low and high word. (In our graph on page 45, Shaft Encoder Parameterisation, the setting 1024 in the high word and 0 in the low word results in a total value of SEITENREFREFFORMATVERBINDENREFFORMATVERBINDEN67.108.864 = 26 Bit).

Example: A value of 1.000.000 is to be entered for the total number of measuring steps. The solution (in decimals) is: 1.000.000 / 2^{16} = 15 rest 16.960; \rightarrow High word=15, Low word=16960

11.3. Configuration example (for hexadecimal parameterisation):

Hen200b7.gsd must be used with configuration tools that do not support the "Ext user parameters" (parameters must be written as hexadecimal values).

12. Technical Data

Mechanical Data:

Shaft diameter	6 mm (synchro-flange), 10 mm (clamping flange)
Load	axial 20 N, radial 40 N (6 mm shaft) axial 40 N, radial 60 N (10 mm shaft
Speed	10000 min ⁻¹ (short-time), 6000 min ⁻¹ (continuous operation)
Torque	≤ 0.5 Ncm
Moment of inertia	Synchro-flange: 14 gcm ² ; clamping flange: 20 gcm ²
Protection class (EN 60529)	Housing IP 65 ¹⁾ , shaft inlet IP64 ^{1), 2)}
Operating temperature	-25 +85 °C
Storage temperature	-25 +85 °C
Vibration resistance (IEC 68-2-6)	100 m/s² (10 - 500 Hz)
Shock resistance (IEC 68-2-27)	1000 m/s ² (6 ms)
Type of connection	Flange-type socket, 2-fold / bus terminal box
Housing	Aluminium
Connector	S=Synchro-flange; K= clamping flange
Weight	Multiturn approx. 350 g, Singleturn approx. 300 g

IP67 upon request
 No water permissible at the shaft input or ball bearing

Electrical Data:

General design	According to EN 61010-Teil 1, Protection Class III, Pollution Degree 2, Installation Category II
Supply voltage	10 30 V DC (SELV)
Power consumption	typical 200 mA, max. 230 mA
Recommended external fuse	T 0,25 A
Current at -	max. 2 A via Pin 7 and 8 (flange-type socket, 2-fold)
Voltage supply; recommended external fuse	max. 2 A via connecting terminals for bus terminal box T 2 A
EMC *	Emitted interference according to EN 50081-2 Interference immunity according to EN 50082-2
Interface	RS 485
Protocol	Profibus DP with encoder profile Class 2 (suitable for parameterisation)
Physical resolution**	1024 steps (10 Bit) Singleturn 4096 steps (12 Bit) Singleturn 8192 steps (13 Bit) Singleturn 16384 steps (14 Bit) Singleturn 4096 steps/4096 turns (24 Bit) Multiturn 8192 steps/4096 turns (25 Bit) Multiturn 16384 steps/4096 turns (26 Bit) Multiturn
Linearity	± ¼LSB (± 1 LSB at resolution 13, 14, 25, 26 Bit)
Code type	Binary
Baud rate	Automatically adjusted within the range of 9.6 Kbit/s to 12 Mbit/s
Instrument address	Adjustable via DIP switches and bus
Programmable functions	Code sequence (Direction), resolution per turn, total resolution, preset, speed, acceleration

* If the shielding/screening instructions are observed. REFFORMATVERBINDENREFFORMATVERBINDEN

** Actual resolution of the code disk; the desired resolution can additionally be reduced via the shaft encoder programming.

13. Dimensional Drawings

Flange-type socket, 2-fold

Bus Terminal Box

ST = Single-turn MT = Multiturn

- 1) Required connecting cable diameter: 7.0 ... 7.4 mm;
- Bus cables having a diameter of 7.9 ... 8.7 mm may be used if the standard PG-type fittings are exchanged with the provided fittings having a larger diameter.
- If you should not need the third PG-type fitting for the external voltage lead you must replace this fitting with the provided locking nut to ensure tightness.

14. Ordering Information

Accessories: Disk with GSD file (order no. 1 543 062 (or available via download from our homepage)

HENGSTLER

HENGSTLER GmbH P.O. Box 11 51 D-78 550 Aldingen

 Phone:
 0 74 24/8 95 39

 Fax:
 0 74 24/8 93 70

 Internet:
 http://www.hengstler.de

REFREFEINBETTENEINBETTENEINFÜGENGRAFIKFORMATVERBINDENEINBETTENEIN BETTEN